首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
环境样品中硝基苯类化合物的分析方法研究进展   总被引:4,自引:0,他引:4  
主要介绍了我国近年来在环境样品中硝基苯类化合物的分析研究进展,内容包括:光度法(还原-偶氮光度法、阻抑动力学光度法、化学计量学分光光度法、人工神经网络-分光光度法)、气相色谱法(固相微萃取-毛细管气相色谱法、树脂吸附-气相色谱法、液-液微萃取气相色谱法、超声萃取-气相色谱法)、高效液相色谱法(反相高效液相色谱法、固相萃取-高效液相色谱法)和极谱法等分析方法。  相似文献   

2.
固相萃取光度法测定烟草中的挥发酚   总被引:1,自引:0,他引:1  
研究了用Waters Sep-Park-C18固相萃取小柱萃取测定烟草样品中的挥发酚的方法。用自动水蒸汽蒸馏仪蒸馏出烟草样品中的挥发酚,4-氨基安替比林显色,显色产物可用Waters Sep-Park-C18固相萃取小柱萃取,以乙醇洗脱后用分光光度法测定,该方法可用于烟草样品中挥发酚的测定。  相似文献   

3.
固相萃取光度法测定饮用水中挥发酚的研究   总被引:5,自引:0,他引:5  
研究了用Waters Sep-Park-C18小柱固相萃取光度法测定饮用水中挥发酚的方法。水样中经水汽蒸馏分离后的挥发酚,用4-氨基安替比林显色,显色产物可用C18固相萃小柱萃取、乙醇洗脱后用分光光度法测定。方法污染小,操作简便,便于批量样品处理,用于饮用水中挥发酚的测定,结果令人满意。  相似文献   

4.
张佳杰  孟子晖  薛敏  魏天晔 《色谱》2018,36(11):1081-1087
烟碱是评价烟草及其制品的感官品质及内在质量的重要指标,同时也是监测食品、环境及人体中尼古丁暴露程度的关键因素。烟碱所在基质复杂,样品多样,针对不同检测环境及要求选择合适高效的分析方法对成功测定烟碱含量至关重要。该文介绍了测定烟草及生物样品中烟碱含量的样品前处理技术(固相/液相微萃取技术和分子印迹法)和常用的检测方法(分光光度法、液相色谱法、气相色谱法、毛细管电泳法、电化学法),评述了每种方法的适用范围、应用实例和研究进展,并讨论了各种检测方法的灵敏度、准确性和检测效率等。  相似文献   

5.
近年来,与实时直接分析质谱(DART-MS)相结合的样品预处理技术发展迅速,使得对复杂生物、环境、法医学、食品、个体小生物以及单细胞样品中的分析物进行直接分析成为可能。然而固体基质内部分析物检测困难、痕量分析物检测性能不佳已成为限制DART-MS进一步发展的关键问题。针对这些问题,多年来,研究人员在不同领域对样品预处理与质谱联用进行了多种尝试。该文以固相萃取(SPE)、分散固相萃取(DSPE)、搅拌棒吸附萃取(SBSE)、固相微萃取(SPME)、机械化学提取(MCE)和微波提取(MAE)等样品预处理技术为例,对不同研究领域中样品预处理技术与DART-MS联用的研究成果进行了综述,并对未来的发展趋势进行了展望。希望该综述能为开发与DART-MS联用的新型样品处理技术提供参考和帮助。  相似文献   

6.
张文敏  刘冠城  马文德  方敏  张兰 《色谱》2022,40(7):600-609
有毒有害物质的排放以及其可能具有的持久性和生物蓄积性,时刻危及人体健康甚至生命。因此,对环境、饮用水、食物和日用品中的有毒有害物质进行分析检测十分重要。对于复杂样品中痕量有毒有害物质的分析,样品预处理是一个至关重要的环节,直接影响分析方法的灵敏度和准确性。在有毒有害物质萃取中广泛应用的预处理技术包括固相萃取(SPE)、固相微萃取(SPME)、分散固相萃取(DSPE)、磁固相萃取(MSPE)等。在上述样品预处理技术中,吸附剂材料是最为核心的部分,它决定了预处理方法的选择性和效率。近年来,共价有机骨架(covalent organic frameworks, COFs)材料因其具有形貌结构多样、比表面积高、孔径可调、稳定性良好等优点,在样品预处理领域受到越来越多的关注。然而,COFs材料在萃取有毒有害物质方面的应用仍存在一些问题需要解决:(1)多数COFs是高度疏水的,这限制了它们在水基样品中的分散性,导致不良的萃取效果;(2)COFs材料主要依靠π-π堆积等相互作用对疏水性目标物进行高效萃取,但不利于极性有毒有害物质的萃取;(3)多数COFs材料存在合成工艺复杂、生产成本高、量产困难等问题。该文对近几年COFs材料在有毒有害物质萃取过程中的研究进展进行了总结和评述。最后,展望了COFs材料在该领域中的应用前景,为进一步研究基于COFs材料的预处理技术提供了参考。  相似文献   

7.
样品前处理技术在气相色谱分析中的应用进展   总被引:1,自引:0,他引:1  
气相色谱法是当前应用最广泛的分析技术之一。使用气相色谱对复杂基体进行分析时的样品前处理步骤往往繁琐耗时,易引起误差,已成为制约分析效率和准确度提升的关键环节。本文综述了2009-2013年几种主要的样品前处理技术,包括吹扫捕集、固相萃取、固相微萃取、液相微萃取技术以及微波辅助萃取、超声波辅助萃取等场辅助萃取技术在气相色谱分析中的应用研究进展。  相似文献   

8.
离子液体具有一些独特的物理和化学性质,作为一种可设计的绿色溶剂被应用于液液萃取、液相微萃取、固相微萃取和膜分离等样品预处理技术中。本文综述了离子液体在样品预处理中应用的研究进展。  相似文献   

9.
海云  孔祥虹  李建华  雷根虎 《色谱》2005,23(3):319-319
甲基硫菌灵的化学名称为1,2-双(3-甲氧羰基-2-硫脲基)-苯,是内吸性杀菌剂,对蔬菜、水果、麦类等的真菌病害有良好的防治效果。它在生物体内和环境中不稳定,因而增加了测定的难度。已报道的分析方法有生物测定法、紫外分光光度法、气相色谱法和液相色谱法。这些方法的样品前处理繁琐,有机溶剂用量多,分析时间长。本文采用中性氧化铝固相萃取小柱净化样品,  相似文献   

10.
固相微萃取GC-MS快速分析火场残留物中汽油成分   总被引:4,自引:0,他引:4  
高展  袁春  刘峰  郑执 《分析测试学报》2004,23(Z1):295-297
火场残留物如碳灰、烧残物等通常经过样品预处理后进行分析鉴定。传统的样品预处理方法往往操作繁琐、费时、重复性差,而且需用大量有机溶剂,不利于分析人员的身体健康,对环境也会造成一定污染。固相微萃取(solid-phasemicroextraction,SPME)是在固相萃取技术的基础上发展起来的一项新的样品预处理技术,于1989年由加拿大Waterloo大学的J.Pawliszyn教授等首次提出,1993年美国的Supelco公司推出了商业化的固相微萃取设备。该技术具有快速、高效、简便、无需溶剂、易于自动化操作等优点,近年来受到了国外学者的普遍关注,已经被用于环境分析和药品检测等许多领域,  相似文献   

11.
This article discusses the more recent methods combining gas chromatography and mass spectrometry (GC-MS) for analysis of personal-care products (PCPs) in water matrices. We describe different procedures for sample extraction and preparation as well as different instrumental methods commonly used for these compounds. GC-MS and GC-tandem MS (GC-MS2), which are complementary to liquid chromatography combined with MS (LC-MS), allow identification and quantification of PCPs belonging to different classes with the sensitivity and the selectivity necessary for environmental monitoring. The compounds investigated include fragrances (e.g., nitro and polycyclic musks), antimicrobial compounds (e.g., triclosan), ultraviolet blockers (e.g., methylbenzylidene camphor), antioxidants and preservatives (e.g., phenols and p-hydroxybenzoic acid (parabens)) and insect repellents (e.g., N,N-diethyl-m-toluamide (DEET)). We critically review data in the literature by focusing attention on analytical methods devoted to simultaneous detection and quantification of structurally diverse pharmaceuticals and PCPs.  相似文献   

12.
复杂基体中痕量多环芳烃分析测定方法的研究进展   总被引:15,自引:0,他引:15  
董新艳  杨亦文  任其龙 《色谱》2005,23(6):609-615
 介绍了环境样品(水和土壤)以及植物油中痕量多环芳烃的分析检测方法。对样品的预处理过程和分析方法做了评价。采用一些新的预处理方法(包括液相色谱法、固相萃取法、超临界二氧化碳萃取法),并结合色谱-质谱在线联用分析检测方法能够获得比较理想的分析结果。引用文献52篇。  相似文献   

13.
In order to meet the requirements of analyzing very low concentrations of pesticides in water (typically at 0.1 μg/l or less), samples have to be concentrated prior to GC-analysis. Samplie pre-concentration by off-line methods based on solid phase extraction (SPE) or liquid-liquid extraction are very time consuming and cumbersome. Moreover, the quantitative performance of the analytical method as a whole in terms of accuracy and reliability is seriously hindered by elaborate, manually performed sample pre-treatment steps. This paper describes an automated method based on solid phase extraction and capillary gas chromatography. The technique was applied for the analysis of 31 polar organophosphorus and organonitrogen pesticides. A commercially available HPLC/GC instrument is modified, using the LC-part for solid phase extraction. The sample, of which only a few ml's is required to obtain sufficiently low detection limits, is delivered by a robotic large volume autosampler. After solid phase extraction and elution, the eluate is transferred into the GC via a so called “loop type interface”. In this paper the instrumentation and analytical methodology is described, as well as the main validation results. The quantitative performance (i.e. recovery and repeatability) of the most polar solutes like metamitron and dimethoate appears to be better than obtained with off-line SPE as a result of the more beneficial ratio between the amount of sorbent and the sample volume. As the loop-type interface causes losses of the most volatile compounds, a co-solvent is added. This co-solvent provides sufficient trapping capacity in the capillary pre-columns to allow quantitative analysis of even the most volatile pesticides. Moreover a better separation of early eluting compounds is also established.  相似文献   

14.
SPME-GC联用测定环境水样中的酚类化合物   总被引:1,自引:0,他引:1  
建立了固相微萃取与气相色谱联用技术测定环境水样中酚类化合物的方法. 探讨了pH、离子强度、萃取头类型、萃取时间以及解析时间等条件对酚类化合物萃取量的影响, 优化了GC仪器条件. 在优化的条件下, 酚类化合物的响应值与浓度有良好的线性关系, 线性范围为0.20~200 μg/L, 检出限在0.019~0.10 μg/L之间, 相对标准偏差(RSD, n=5)为4.4%~11%, 水样平均加标回收率为92.2%~101.9%, 所建立的方法可测定环境水样中的酚类化合物.  相似文献   

15.
To discourage consumption, ethanol is often denatured using both volatile (e.g., methyl ethyl ketone and isopropanol) and nonvolatile (e.g., denatonium benzoate) chemical substances. As a result, the analysis of denatured ethanol samples is usually performed by multiple techniques such as gas chromatography for the volatile denaturants and liquid chromatography for the nonvolatile ones. However, the need for multiple techniques increases the cost of analysis and forms a severe obstruction for on‐site product control. Using the full evaporation technique combined with gas chromatography and flame ionization detection, only one analytical methodology has to be used here to determine both volatile and nonvolatile denaturants in denatured ethanol. Denatonium benzoate is determined as benzyl chloride following an in‐vial reaction. Compared to conventional techniques, the novel method performs equally well, but it is simpler to apply. At the same time, drawbacks of alternative methods are circumvented such as equilibration issues and alterations to the stationary phase when using liquid chromatography with ion pairing agents or matrix effects when applying static headspace gas chromatography. The developed method showed good linearity, repeatability, and recovery toward all analytes and was applied to the analysis of commercial denatured ethanol for disinfection and ethanol‐based windscreen washer fluids.  相似文献   

16.
Solid-phase microextraction in biomedical analysis   总被引:12,自引:0,他引:12  
Chromatographic methods are preferred in the analysis of organic molecules with lower molecular mass (<500 g/mol) in body fluids, i.e., the assay of drugs, metabolites, endogenous substances and poisons as well as of environmental exposure by gas chromatography (GC) and liquid chromatography (LC), for example. Sample preparation in biomedical analysis is mainly performed by liquid-liquid extraction and solid-phase extraction. However, new methods are investigated with the aim to increase the sample throughput and to improve the quality of analytical methods. Solid-phase microextraction (SPME) was introduced about a decade ago and it was mainly applied to environmental and food analysis. All steps of sample preparation, i.e., extraction, concentration, derivatization and transfer to the chromatograph, are integrated in one step and in one device. This is accomplished by the intelligent combination of an immobilized extraction solvent (a polymer) with a special geometry (a fiber within a syringe). It was a challenge to test this novel principle in biomedical analysis. Thus, an introduction is provided to the theory of SPME in the present paper. A critical review of the first applications to biomedical analyses is presented in the main paragraph. The optimization of SPME as well as advantages and disadvantages are discussed. It is concluded that, because of some unique characteristics, SPME can be introduced with benefit into several areas of biomedical analysis. In particular, the application of headspace SPME-GC-MS in forensic toxicology and environmental medicine appears to be promising. However, it seems that SPME will not become a universal method. Thus, on-line SPE-LC coupling with column-switching technique may be a good alternative if an analytical problem cannot be sufficiently dealt with by SPME.  相似文献   

17.
Two less laborious extraction methods, viz. (i) a simplified liquid extraction using light petroleum or (ii) microwave-assisted solvent extraction (MASE), for the analysis of polycyclic aromatic hydrocarbons (PAHs) in samples of the compost worm Eisenia andrei, were compared with a reference method. After extraction and concentration, analytical methodology consisted of a cleanup of (part) of the extract with high-performance gel permeation chromatography (HPGPC) and instrumental analysis of 15 PAHs with reversed-phase liquid chromatography with fluorescence detection (RPLC-FLD). Comparison of the methods was done by analysing samples with incurred residues (n=15, each method) originating from an experiment in which worms were exposed to a soil contaminated with PAHs. Simultaneously, the performance of the total lipid determination of each method was established. Evaluation of the data by means of principal component analysis (PCA) and analysis of variance (ANOVA) revealed that the performance of the light petroleum method for both the extraction of PAHs (concentration range 1-30 ng/g) and lipid content corresponds very well with the reference method. Compared to the reference method, the MASE method yielded somewhat lower concentrations for the less volatile PAHs, e.g., dibenzo[ah]anthracene and benzo[ghi]perylene and provided a significant higher amount of co-extracted material.  相似文献   

18.
Crude oil contains such an extensive range of compounds that a complete analysis is impossible. Fractionation by chemical properties is often used to simplify analytical handling. This work presents a high performance liquid chromatography (HPLC) method using normal phase chromatography on a cyano-bonded phase column to separate acid extracts from crude oils into four fractions; non-polar compounds, saturated carboxylic acids, phenols and polyfunctional acids. The method has been developed both in analytical scale for characterisation of acid extracts, and in preparative scale to provide sufficient sample amounts for further analysis by complementary methods.  相似文献   

19.
The rapidly expanding field of per- and polyfluorinated alkyl substances (PFASs) research has resulted in a wide range of analytical methodologies to determine the human and environmental exposure to PFASs. This paper reviews the currently applied techniques for sample pre-treatment, extraction and clean-up for the analysis of ionic and non-ionic PFASs in human and environmental matrices. Solid phase extraction (SPE) is the method of choice for liquid samples (e.g. water, blood, serum, plasma), and may be automated in an on-line set-up for (large volume) sample enrichment and sample clean-up. Prior to SPE, sample pre-treatment (filtration or centrifugation for water or protein precipitation for blood) may be required. Liquid-liquid extraction can also be used for liquid samples (and does not require above mentioned sample pretreatment). Solid-liquid extraction is the commonly applied method for solid matrices (biota, sludge, soil, sediment), but automation options are limited due to contamination from polytetrafluorethylene tubings and parts applied in extraction equipment. Air is generally preconcentrated on XAD-resins sandwiched between polyurethane foam plugs. Clean-up of crude extracts is essential for destruction and removal of lipids and other co-extractives that may interfere in the instrumental determination. SPE, (fluorous) silica column chromatography, dispersive graphitized carbon and destructive methods such as sulphuric acid or KOH treatment can be applied for clean-up of extracts. Care should be taken to avoid contamination (e.g. from sample bottles, filters, equipment) and losses of PFASs (e.g. adsorption, volatilization) during sampling, extraction and clean-up. Storage at -20 degrees C is generally appropriate for conservation of samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号