首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
An O-bonded sulphito complex, Rh(OH2)5(OSO2H)2+, is reversibly formed in the stoppedflow time scale when Rh(OH2) 6 3+ and SO2/HSO 3 buffer (1 <pH< 3) are allowed to react. For Rh(OH2)5OH2++ SO2 □ Rh(OH2)5(OSO2H)2+ (k1/k-1), k1 = (2.2 ±0.2) × 103 dm3 mol−1 s−1, k1 = 0.58 ±0.16 s−1 (25°C,I = 0.5 mol dm−3). The protonated O-sulphito complex is a moderate acid (K d = 3 × 10−4 mol dm−3, 25°C, I= 0.5 mol dm−3). This complex undergoes (O, O) chelation by the bound bisulphite withk= 1.4 × 10−3 s−1 (31°C) to Rh(OH2)4(O2SO)+ and the chelated sulphito complex takes up another HSO 3 in a fast equilibrium step to yield Rh(OH2)3(O2SO)(OSO2H) which further undergoes intramolecular ligand isomerisation to the S-bonded sulphito complex: Rh(OH2)3(O2SO)(OSO2)- → Rh(OH2)3(O2SO)(SO3) (k iso = 3 × 10−4 s−1, 31°C). A dinuclear (μ-O, O) sulphite-bridged complex, Na4[Rh2(μ-OH)2(OH)2(μ-OS(O)O)(O2SO)(SO3) (OH2)]5H2O with (O, O) chelated and S-bonded sulphites has been isolated and characterized. This complex is sparingly soluble in water and most organic solvents and very stable to acid-catalysed decomposition  相似文献   

2.
Two solid complexes, fac–[Cr(gly)3] and [Cr(gly)2(OH)]2, (where gly is glycinato ligand) were prepared and their acid-catalysed aquation products were identified. The structure of [Cr(gly)3] was solved by X-ray diffraction, revealing a cationic 3D sublattice with perchlorate anions inside its cavities. Acid-catalysed aquation of [Cr(gly)3] and [Cr(gly)2(OH)]2 leads to the same inert product, [Cr(gly)2(H2O)2]+, in a two-stages process. At the first stage, intermediate complexes, [Cr(gly)2(O–glyH)(H2O)]+ and [Cr(gly)2(H2O)–OH–Cr(gly)2(H2O)]+, are formed respectively. Kinetics of the first aquation stage of [Cr(gly)3] were studied in HClO4 solutions. The dependencies of the pseudo first-order rate constants on [H+] are as follows: k obs1H = k 0 + k 1 K p1[H+], where k 0 and k 1 are rate constants for the chelate-ring opening via spontaneous and acid-catalysed reaction paths, respectively, and K p1 is the protonation constant. The proposed mechanism assumes formation of the reactive intermediate as a result of proton addition to the coordinated carboxylate group of the didentate ligand. Some kinetic studies on the second reaction stage, the one-end bonded glycine liberation, were also done. The obtained results were analogous to those for stage I. In this case, the proposed reactive species are intermediates, protonated at the carboxylate group of the monodentate glycine. Base hydrolysis of two complexes, [Cr(gly)2(O–gly)(OH)] and [Cr(gly)2(OH)2], was studied in 0.2–1.0 M NaOH. The pseudo first-order rate constants, k obsOH, were [OH] independent in the case of [Cr(gly)2(O–gly)(OH)], whereas those for [Cr(gly)2(OH)2] linearly depended on [OH]. The reaction mechanisms were proposed, where the OH -catalysed reaction path was rationalized in terms of formation of the reactive conjugate base, [Cr(gly)2(OH)(O)]2−, as a result of OH ligand deprotonation. Activation parameters were determined and discussed.  相似文献   

3.
New chromium(III) complexes, [Cr(C2O4)2(2-hnic)]2− and [Cr(C2O4)2(3-hpic)]2− (where 2-hnic = O,O′-bonded 2-hydroxynicotinic acid and 3-hpic = N,O-bonded 3-hydroxypicolinic acid), were obtained and characterized in solution. The acid-catalyzed aquation of the both complexes leads to liberation of the appropriate pyridinecarboxylic acid and formation of cis-[Cr(C2O4)2(H2O)2]. Kinetics of these reactions were studied spectrophotometrically in the 0.1–1.0 M HClO4 range, at I = 1.0 M. In the case of [Cr(C2O4)2(2-hnic)]2−, a slow chelate-ring opening at the Cr–O (phenolate) bond is followed by a fast Cr–O (carboxylate) bond breaking. The rate law: kobs = kHQH[H+] was established, where kH is the acid-catalyzed rate constant and QH is the protonation constant of the coordinated phenolate oxygen atom. In the case of [Cr(C2O4)2(3-hpic)]2−, the reversible chelate-ring opening at Cr–N bond is followed by the rate determining step – the one-end bonded ligand liberation. The rate law for the first step was determined: kobs = k1+k−1/Q1[H+], where k1 and k−1 are the rate constants of the chelate-ring opening and closure and Q1 is the protonation constant of the pyridine nitrogen atom. The aquation mechanisms are proposed and the effect of ligand coordination mode on complex reactivity is discussed.  相似文献   

4.
Base hydrolysis of [Cr(ox)2(quin)]3− (where quin2− is N,O-bonded 2,3-pyridinedicarboxylic acid dianion) causes successive ligand dissociation and leads to a formation of a mixture of oligomeric chromium(III) species, known as chromates(III). The reaction proceeds through [Cr(ox)(quin)(OH)2]3− and [Cr(quin)(OH)4]3− formation. Dissociation of oxalato ligands is preceded by the opening of the Cr-quin chelate-ring at the Cr–N bond. The kinetics of the chelate-ring opening and the first oxalate dissociation were studied spectrophotometrically, within the lower energy d–d band region at 0.4–1.0 M NaOH. The pseudo-first-order rate constants (k obs0 and k obs1) were calculated using SPECFIT software for an A → B → C reaction pattern. Additionally, kinetics of base hydrolysis of [Cr(ox)(quin)(OH)2]3− and cis-[Cr(ox)2(OH)2]3− were studied. The determined pseudo-first-order rate constants were independent of [OH]. A mechanism is postulated that the reactive intermediate with the one-end bonded quin ligand, [Cr(ox)2(O-quin)(OH)]4−, formed in the first reaction stage, subsequently undergoes oxalates substitution. Kinetic parameters for the chelate-ring opening and the first oxalate dissociation were determined.  相似文献   

5.
The following chromium(III) complexes with serine (Ser) and aspartic acid (Asp) were obtained and characterized in solution: [Cr(ox)2(Aa)]2− (where Aa = Ser or Asp), [Cr(AspH−1)2] and [Cr(ox)(Ser)2]. In acidic solutions, [Cr(ox)2(Aa)]2− undergoes acid-catalysed aquation to cis-[Cr(ox)2(H2O)2] and the appropriate amino acid. [Cr(ox)(Ser)2] undergoes consecutive acid-catalysed Ser liberation to give [Cr(ox)(H2O)4]+, and the [Cr(Asp)2] ion is converted into [Cr(Asp)(H2O)4]2+. Kinetics of these reactions were studied under isolation conditions. The determined rate expressions for all the reactions are of the form: k obs = a + b[H+]. Reaction mechanisms are proposed, and the meaning of the determined parameters has been established. Evidence for the formation of an intermediate with O-monodentate amino acid is given. The effect of the R-substituent at the α-carbon atom of the amino acid on the complex reactivity is discussed.  相似文献   

6.
The kinetics of oxidation of hydroquinone (H2Q) by a μ-oxo-bridged diiron(III,III) complex, Fe2(μ-O)(phen)4(H2O)2]4+ (1) has been investigated in aqueous media at 25.0 °C in presence of an excess of 1,10-phenanthroline (phen). The overall redox rate increases with increase in [H+]. The title complex (1) and its conjugate bases, [Fe2(μ-O)(phen)4(OH)2]3+(2) and [Fe2(μ-O)(phen)4(OH)2]2+ (3), participate in the reaction with H2Q as the only kinetically reactive reducing species. Rate constants (in dm3 mol−1 s−1) for the parallel reactions (1) + H2Q → Products, (2) + H2Q → Products and that for (3) + H2Q → Products are, respectively, 500 ± 40, 100 ± 6 and 30 ± 2. Substantial rate retardation in D2O media in comparison to that in H2O media suggests that electron transfer is coupled with proton movements in the rate-determining step.  相似文献   

7.
Chromium(III)-carbonate reactions are expected to be important in managing high-level radioactive wastes. Extensive studies on the solubility of amorphous Cr(III) hydroxide solid in a wide range of pH (3–13) at two different fixed partial pressures of CO2(g) (0.003 or 0.03 atm.), and as functions of K2CO3 concentrations (0.01 to 5.8 mol⋅kg−1) in the presence of 0.01 mol⋅dm−3 KOH and KHCO3 concentrations (0.001 to 0.826 mol⋅kg−1) at room temperature (22±2 °C) were carried out to obtain reliable thermodynamic data for important Cr(III)-carbonate reactions. A combination of techniques (XRD, XANES, EXAFS, UV-Vis-NIR spectroscopy, thermodynamic analyses of solubility data, and quantum mechanical calculations) was used to characterize the solid and aqueous species. The Pitzer ion-interaction approach was used to interpret the solubility data. Only two aqueous species [Cr(OH)(CO3)22− and Cr(OH)4CO33−] are required to explain Cr(III)-carbonate reactions in a wide range of pH, CO2(g) partial pressures, and bicarbonate and carbonate concentrations. Calculations based on density functional theory support the existence of these species. The log 10 K° values of reactions involving these species [{Cr(OH)3(am) + 2CO2(g)Cr(OH)(CO3)22−+2H+} and {Cr(OH)3(am) + OH+CO32− Cr(OH)4CO33−}] were found to be −(19.07±0.41) and −(4.19±0.19), respectively. No other data on any Cr(III)-carbonato complexes are available for comparisons.  相似文献   

8.
Three chromium(III) complexes of general formula [Cr(ox)2(pdaH)]2− (where ox = C2O4 2− and pdaH is N,O-bonded 2,3-, 2,4- or 2,5-pyridinedicarboxylic acid anion) were obtained and characterized in solution. Acid-catalysed aquation of [Cr(ox)2(pdaH)]2− gave two products: [Cr(ox)(pdaH)(H2O)2]0 (P1) and cis-[Cr(ox)2(H2O)2]2− (P2). The kinetics of these reactions were studied spectrophotometrically, within the 0.1–1.0 M HClO4 range, and the pseudo-first-order rate constants for the oxalato (k obs1) and pdaH (k obs2) ligands dissociation were calculated based on the determined pseudo-first-order rate constants (k obs) and P1:P2 molar ratio. The dependencies of the pseudo-first-order rate constants on [H+] are as follows: k obs1 = b 1[H+] and k obs2 = b 2[H+], where b 1 and b 2 are the second-order rate constants for the oxalato and pdaH ligands dissociation, respectively. Kinetic parameters were determined and the mechanism of the pdaH ligand dissociation is proposed.  相似文献   

9.
Chromium(III)-lutidinato complexes of general formula [Cr(lutH) n (H2O)6−2n ]3−n (where lutH is N,O-bonded lutidinic acid anion) were obtained and characterized in solution. Acid-catalysed aquation of [Cr(lutH)3]0 leads to only one ligand dissociation, whereas base hydrolysis produces chromates(III) as a result of subsequent ligand liberation steps. The kinetics of the first ligand dissociation were studied spectrophotometrically, within the 0.1–1.0 M HClO4 and 0.4–1.0 M NaOH range. In acidic media, two reaction stages, the chelate-ring opening and the ligand dissociation, were characterized. The dependencies of pseudo-first-order rate constants on [H+] are as follows: k obs1 = k 1 + k −1/K 1[H+] and k obs2 = k 2 K 2[H+]/(1 + K 2[H+]), where k 1 and k 2 are the rate constants for the chelate-ring opening and the ligand dissociation, respectively, k −1 is the rate constant for the chelate-ring closure, and K 1 and K 2 are the protonation constants of the pyridine nitrogen atom and coordinated 2-carboxylate group in the one-end bonded intermediate, respectively. In alkaline media, the rate constant for the first ligand dissociation depends on [OH]: k obs1 = k OH(1) + k O[OH], where k OH(1) and k O are rate constants of the first ligand liberation from the hydroxo- and oxo-forms of the intermediate, respectively, and K 2 is an equilibrium constant between these two protolytic forms. Kinetic parameters were determined and a mechanism for the first ligand dissociation is proposed. The kinetics of the ligand liberation from [Cr(lut)(OH)4]3− were also studied and the values of the pseudo-first-order rate constants are [OH] independent.  相似文献   

10.
Kinetics of the OH-initiated reactions of acetic acid and its deuterated isomers have been investigated performing simulation chamber experiments at T = 300 ± 2 K. The following rate constant values have been obtained (± 1σ, in cm3 molecule−1 s−1): k 1(CH3C(O)OH + OH) = (6.3 ± 0.9) × 10−13, k 2(CH3C(O)OD + OH) = (1.5 ± 0.3) × 10−13, k 3(CD3C(O)OH + OH) = (6.3 ± 0.9) × 10−13, and k 4(CD3C(O)OD + OH) = (0.90 ± 0.1) × 10−13. This study presents the first data on k 2(CH3C(O)OD + OH). Glyoxylic acid has been detected among the products confirming the fate of the CH2C(O)OH radical as suggested by recent theoretical studies.  相似文献   

11.
Two multidentate ligands: N,N′-di-(propionic acid-2′-yl-)-2,9-diaminomethyl-1,10-phenanthroline (L1) and N,N′-di-(3′-methylbutyric acid-2′-yl-)-2,9-diaminomethyl-1,10-phenanthroline (L2) were synthesized. The hydrolytic kinetics of p-nitrophenyl phosphate (NPP) catalyzed by complexes of L1 and L2 with La(III), Gd(III) have been studied. Both LnL and LnLH−1 have been examined as catalysis for the hydrolysis of NPP in aqueous solution at 298 K, I = 0.10 mol dm−3 KNO3 at the pH range 7.4–9.1, respectively. Kinetic studies show that both LnL and LnLH−1 have catalytic activity, but LnLH−1 is more active than LnL in the hydrolysis of NPP. The second-order rate constants for the hydrolysis of NPP are kGdL1H−1 = 0.01399 mol−1 dm3 s−1, kGdL1 = 0.0000110 mol−1 dm3 s−1 for complexes GdL1H−1 and GdL1, respectively. A new mechanism was proposed for the hydrolysis of NPP catalyzed by LnL and LnLH−1.  相似文献   

12.
pH potentiometric and spectrophotometric investigations on the complex formation equilibria of CuII with iminodiacetate (ida2−) and heterocyclic N-bases, viz. imidazole and benzimidazole (B), in aqueous solution in binary and ternary systems using different molar ratios of the reactants indicated the formation of complexes of the types, Cu(ida), Cu(ida)(OH), (ida)Cu(OH)Cu(ida), Cu(B)2+, Cu(H-1B)+, Cu(ida)(H−1B), (ida)Cu(B)Cu(ida) and (ida)Cu(H−1B)Cu(ida). Formation constants of the complexes at 25 ±1° at a fixed ionic strength,I = 0.1 mol dm−3 (NaNO3) in aqueous solution were evaluated and the complex formation equilibria were elucidated with the aid of speciation curves. Departure of the experimental values of the reproportionation constants(ΔlogK cu) of ternary Cu(ida)(H−1B) complexes from the statistically expected values, despite their formation in appreciable amounts at equilibrium, were assigned tofac(f)-mer(m) equilibria of the ida2− ligand coordinated to CuII, as the N-heterocyclic donors, (H−1B), coordinatetrans- to the N-(ida2−) atom in the binary Cu(ida) f complex to form the ternary Cu(ida) m (H−1B) complexes  相似文献   

13.
The kinetics of the base hydrolysis ofcis-[Co(en)2(RNH2)-(SalH)]2+ (R=Me or Et; SalH=HOC6H4CO 2 ) were investigated in aqueous ClO 4 in the 0.004–0.450 mol dm−3 [OH] range, I=0.50 mol dm−3 at 30–40°C. The phenoxide species is hydrolysed via [OH]-independent and [OH]-dependent paths, the latter being first order in [OH]. The high rate of alkali-independent hydrolysis of the phenoxide species is associated with high ΔH and ΔS values, in keeping with the SNICB mechanism involving an amido conjugate base generated by the phenoxide-assisted NH-deprotonation of the coordinated amine. The [OH]-dependent path also involves the conventional SN1 CB mechanism. The rate constant, k1, for the SNICB path exhibits a steric acceleration with the increasing size of the non-labile alkylamine, whereas the rate constant, k2, for the SN1CB path shows a reverse trend. TMC 2578  相似文献   

14.
Two new chromium(III) complexes with picolinamide (pica) and oxalates, [Cr(C2O4)2(N,N′-pica)]2− and [Cr(C2O4)2(N,O-pica)], were obtained and the kinetics of their aquation in HClO4 solutions were studied. The aquation leads to pica liberation and proceeds in two stages: (i) the chelate-ring opening at the Cr–amide bond and (ii) the Cr–N-pyridine bond breaking, which gives free pica and cis-[Cr(C2O4)2(H2O2)2]. In the case of N,N′-bonded pica the kinetics of both stages was determined and in the case of the N,O-bonded pica only the second stage was investigated. The following rate laws were established: (k obs)1 = k 0 + k 1 Q 1[H+] and (k obs)2 = k 2 Q 2[H+], where k 0 and k 1 are the rate constants of the chelate-ring opening in the unprotonated and protonated starting complex, and k 2 is the rate constant of the pica liberation from the protonated intermediate. Kinetic parameters are calculated and the aquation mechanism is discussed.  相似文献   

15.
The reductions of [Co(CN)5NO2]3−, [Co(NH3)5NO2]2+ and [Co(NH3)5ONO]2+, by TiIII in aqueous acidic solution have been studied spectrophotometrically. Kinetic studies were carried out using conventional techniques at an ionic strength of 1.0 mol dm−3 (LiCl/HCl) at 25.0 ± 0.1 °C and acid concentrations between 0.015 and 0.100 mol dm−3. The second-order rate constant is inverse—acid dependent and is described by the limiting rate law:- k2 ≈ k0 + k[H+]−1,where k=k′Ka and Ka is the hydrolytic equilibrium constant for [Ti(H2O)6]3+. Values of k0 obtained for [Co(CN)5NO2]3−, [Co(NH3)5NO2]2+ and [Co(NH3)5ONO]2+ are (1.31 ± 0.05) × 10−2 dm3 mol−1 s−1, (4.53 ± 0.08) × 10−2 dm3 mol−1 s−1 and (1.7 ± 0.08) × 10−2 dm3 mol−1 s−1 respectively, while the corresponding k′ values from reductions by TiOH2+ are 10.27 ± 0.45 dm3 mol−1 s−1, 14.99 ± 0.70 dm3 mol−1 s−1 and 17.93 ± 0.78 dm3 mol−1 s−1 respectively. Values of K a obtained for the three complexes lie in the range (1–2) × 10−3 mol dm−3 which suggest an outer-sphere mechanism.  相似文献   

16.
Two long-chain multidentate ligands: 2,9-di-(n-2′,5′,8′-triazanonyl)-1,10-phenanthroline (L1) and 2,9-di-(n-4′,7′,10′-triazaundecyl)-1,10-phenanthroline (L2) were synthesized. The hydrolytic kinetics of p-nitrophenyl phosphate (NPP) catalyzed by complexes of L1 and L2 with La(III) and Gd(III) have been studied in aqueous solution at 298 K, I = 0.10 mol · dm−3 KNO3 at pH 7.5–9.1, respectively. The study shows that the catalytic effect of GdL1 was the best in the four complexes for hydrolysis of NPP. Its kLnLH−1, k LnL and pK a are 0.0127 mol−1 dm3 s−1, 0.000022 mol−1 dm3 s−1 and 8.90, respectively. This paper expounds the result from the structure of the ligands and the properties of the metal ions, and deduces the catalysis mechanism.  相似文献   

17.
The kinetics of oxidation of the chromium(III) complexes, [Cr(Ino)(H2O)5]3+ and [Cr(Ino)(Gly)(H2O)3]2+ (Ino?=?Inosine and Gly?=?Glycine) involving a ligands of biological significance by N-bromosuccinimide (NBS) in aqueous solution to chromium(VI) have been studied spectrophotometrically over the 25–45°C range. The reaction is first order with respect to both [NBS] and [Cr], and increases with pH over the 6.64–7.73 range in both cases. The experimental rate law is consistent with a mechanism in which the hydroxy complexes [Cr(Ino)(H2O)4(OH)]2+ and [Cr(Ino)(Gly)(H2O)2(OH)]+ are significantly more reactive than their conjugate acids. The value of the intramolecular electron transfer rate constant, k 1, for the oxidation of the [Cr(Ino)(H2O)5]3+ (6.90?×?10?4?s?1) is lower than the value of k 2 (9.66?×?10?2?s?1) for the oxidation of [Cr(Ino)(Gly)(H2O)2]2+ at 35°C and I?=?0.2?mol?dm?3. The activation parameters have been calculated. Electron transfer apparently takes place via an inner-sphere mechanism.  相似文献   

18.
The complex species formed in aqueous solutions (25 °C, I=3.0 mol⋅dm−3 KCl ionic medium) between the V(III) cation and the ligands 6-methylpicolinic acid (MePic, HL), salicylic acid (H2Sal, H2L) and phthalic acid (H2Phtha, H2L) have been studied by potentiometric and spectrophotometric measurements. Application of the least-squares computer program LETAGROP to the experimental emf(H) data, taking into account the hydrolytic species and hydrolysis constants of V(III), indicates that under the employed experimental conditions the complexes [VL]2+, [V(OH)L]+, [V(OH)2L], [V(OH)3L], [VL2]+, [VL3] and [V2OL4] form in the vanadium(III)–MePic system. Were observed the complexes [VL]+, [VL2], [V(OH)L2]2− and [VL3]3− in the vanadium(III)–H2Sal system, and the species [VHL]2+, [VL]+, [V(OH)L], [VHL2], [VL2], [V(OH)L2]2−, [V(OH)2L2]3− and [VL3]3− in the vanadium(III)–H2Phtha system. The stability constants of these complexes were determined by potentiometric measurements, and spectrophotometric measurements were made in order to perform a qualitative characterization of the complexes formed in aqueous solution.  相似文献   

19.
The octahedral complex, [CoIII(HL)]·9H2O (H4L = (1,8)-bis(2-hydroxybenzamido)-3,6-diazaoctane) incorporating bis carboxamido-N-, bis sec-NH, phenolate, and phenol coordination has been synthesized and characterized by analytical, NMR (1H, 13C), e.s.i.-Mass, UV–vis, i.r., and Raman spectroscopy. The formation of the complex has also been confirmed by its single crystal X-ray structure. The cyclic voltammetry of the sample in DMF ([TEAP] = 0.1 mol dm−3, TEAP = tetraethylammonium perchlorate) displayed irreversible redox processes, [CoIII(HL)] → [CoIV(HL)]+ and [CoIII(HL)] → [CoII(HL)] at 0.41 and −1.09 V (versus SCE), respectively. A slow and H+ mediated isomerisation was observed for the protonated complex, [CoIII(H2L)]+ (pK = 3.5, 25 °C, I = 0.5 mol dm−3). H2Asc was an efficient reductant for the complex and the reaction involved outer sphere mechanism; the propensity of different species for intra molecular reduction followed the sequence: [{[CoIII(HL)],(H2Asc)}–H] <<< {[CoIII(H2L)],(H2Asc)}+ < {[CoIII(HL)],(H2Asc)}. A low value (ca. 3.7 × 10−10 dm3 mol−1 s−1, 25 °C, I = 0.5 mol dm−3) for the self exchange rate constant of the couple [CoIII(HL)]/[CoII(HL)] indicated that the ligand HL3− with amido (N-) donor offers substantial stability to the CoIII state. HSO3 and [CoIII(HL)] formed an outer sphere complex {[CoIII(HL)],(HSO3)}, which was slowly transformed to an inner sphere S-bonded sulfito complex, [CoIII(H2L)(HSO3)] and the latter was inert to reduction by external sulfite but underwent intramolecular SIV → CoIII electron transfer very slowly. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
The interaction of (1,8)bis(2-hydroxybenzamido)3,6-diazaoctane (LH2) with iron(III) in acidic medium resulted in the formation of a mononuclear complex, Fe(LH3)4+ which further yielded, [Fe(LH2)]3+, [Fe(LH)]2+, and [FeL]+ due to protolytic equilibria. The formation of [Fe(LH3)]4+ was investigated under varying [H+]T (0.01–0.10 mol dm−3) and [Fe3+]T (1.00 × 10−3–1.70 × 10−2, [L]T = 1.0 × 10−4 mol dm−3) (I = 0.3 mol dm−3, 10% MeOH + H2O, 25.0 °C). The reaction was reversible and displayed monophasic kinetics; the dominant path involved Fe(OH)(OH2) 5 2+ and LH 4 2+ . The mechanism is essentially a dissociative interchange (I d) and the dissociation of the aqua ligand from the encounter complex, [Fe(OH2)5OH2+, H4L2+] is rate limiting. The ligand binds iron(III) in a bidentate ([Fe(H3L)]4+), tetradentate ([Fe(H2L)]3+), pentadentate ([Fe(HL)]2+) and hexadentate fashion ([FeL]+) under varying pH conditions. Iron(III) promoted deprotonation of the amide and phenol moieties and chelation driven deprotonation of the sec-NH 2 + of the trien spacer unit are in tune with the above proposition. The mixed ligand complexes, [FeIII(LH)(X)] (X = N 3 , NCS, ACO) are also reversibly formed in solution thus indicating that there is a replaceable aqua ligand in the complex conforming to its octahedral coordination, [Fe(LH)(OH2)]2+, the bound ligand is protonated at the sec-NH site. Despite the multidentate nature of the ligand the FeIII complexes are prone to reduction by sulfur(IV) and ascorbic acid. The redox reactions of different iron(III) species, FeIII(LHi) which involved ternary complex formation with the reductants have been investigated kinetically as a function of pH, [SIV]T and [ascorbic acid]T. The substantial pK perturbation of the bound ascorbate in [Fe(LH)(HAsc/Asc)]+/0 (ΔpK {[Fe(LH)(HAsc)] − HAsc − } > 6) is considered to be compelling evidence for chelation of HAsc/Asc2− leading to hepta coordination of iron(III) in the ascorbate complexes. A novel binuclear complex with composition, [FeIII 2C20N4H35O11 (NO3)] has been synthesized and characterized by i.r., u.v.–vis, e.s.r., e.s.i.-Mass, 57Fe Mossbauer spectroscopy and magnetic moment measurements. The complex was isolated as a mixture of two forms C 1 and C 2 with 75.3 and 24.7%, respectively as computed from Mossbauer data. The isomer shift (δ) (quadrupole splitting, ΔE Q) are 0.32 mm s−1 (0.75 mm s−1) and 0.19 mm s−1 (0.68 mm s−1) for C 1 and C 2, respectively. The variable temperature magnetic moment measurements (10–300 K) of the sample showed that C 1 is an oxo dimer exhibiting antiferromagnetic interaction between the iron(III) atoms (S 1 = S 2 = 5/2, J = − 120 cm−1) while the dimer C 2 is a high spin species (S 1 = S 2 = 5/2) and exhibits normal paramagnetism obeying the Curie law. The cyclic voltametry response of the sample (DMF, [TEAP] = 0.1 mol dm−3) displayed quasi-reversible responses at − 0.577 V and − 1.451 V (versus SCE). This is in tune with the fact that the C 2 species reverts rapidly in solution to the relatively more stable oxo-bridged dimer (C 1) which is reduced in two sequential steps: C1 + e → [FeL]+ + FeII; [FeL]+ + e → FeIIL, the high labilility of the FeII complex is attributed to the irreversibility. The X-band e.s.r. spectrum of the polycrystalline sample at room temperature displayed a weak (unresolved) band at g = 4.2 and a strong band at g = 2.0 with hyperfine splitting due to the coordinated nitrogen (I = 1). At 77 K the band at g = 4.2 is intensified while that at g = 2 is broadened to the extent of near disappearance in agreement with the presence of the exchange coupled iron(III) centres. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users. An erratum to this article is available at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号