首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 857 毫秒
1.
The formation of a complex between an anionic spherical polyelectrolyte brush (SPB) and the cationic surfactant cetyltrimethylammonium bromide (CTAB) is investigated. The SPB consists of long chains of the strong polyelectrolyte poly(styrene sulfonate) (PSS), which are bound chemically to a solid poly(styrene) core of 56 nm in radius. The SPB are dispersed in water, and the ionic strength is adjusted by addition of NaBr. The resulting complexes are investigated in dilute solution by dynamic light scattering, by electrophoretic light scattering, and by cryogenic transmission electron microscopy (cryo-TEM). The formation of the complex between the SPB and the surfactant can be monitored by a strong shrinking of the surface layer when adding CTAB to dilute suspensions (0.01 wt %) and by a decrease of the effective charge of the complexes. Complex formation starts at CTAB concentrations lower than the critical micelle concentration of this surfactant. If the ratio r of the charges on the SPB to the charge of the added surfactant is exceeding unity, the particles start to flocculate. Cryo-TEM images of the complexes at r = 0.6 measured in salt-free solution show that the surface layer composed of the PSS chains and the adsorbed CTAB molecules is partially collapsed: A part of the chains form a dense surface layer while another part of the chains or aggregates thereof are still sticking out. This can be deduced from the cryo-TEM micrographs as well as from the hydrodynamic radius, which is still of appreciable magnitude. The 1:1 complex (r = 1.0) exhibits a fully collapsed layer formed by the PSS chains and CTAB. If the complex is formed in the presence of 0.05 M NaBr, r = 0.6 leads to globular structures directly attached to the surface of the core particles. All structures seen in the cryo-TEM images can be explained by a collapse transition of the surface layer brought about by the hydrophobic attraction between the polyelectrolyte chains that became partially hydrophobic through adsorption of CTAB.  相似文献   

2.
When polyelectrolyte chains are grafted to colloidal particles, the electric field between particles is affected by the charges of the chains. In some previous theoretical attempts, the charge density of the polyelectrolyte chains per unit length was considered constant, and its effect was accounted for by introducing an additional constant charge density into the unidimensional Poisson-Boltzmann equation, which was evaluated assuming that it is uniformly distributed in the polyelectrolyte volume of the brush. In this paper, a more detailed model is employed for the calculation of the electrical potential between two plates on which polyelectrolyte brushes are present. In this model, the polyelectrolyte chain is viewed as a rigid cylinder, on the surface of which charges are generated through the dissociation of ionizable sites and adsorption of the cations of the electrolyte. To each of the chains an atmosphere is attached which for simplicity is assumed cylindrical. In the brush region, the electrical potential is described by a two-dimensional Poisson-Boltzmann equation, while in the region free of polyelectrolyte chains by a unidimensional Poisson-Boltzmann equation. Such a model is physically suitable when the charges of the chains are sufficiently large for the repulsion they generate to ensure that the chains are fully extended. Such cases are quite frequent, because relatively low charges lead to an almost complete extension of the chains. In this paper, both the plate surface and the surface of the cylinders are considered charged. The effects of electrolyte concentration, pH, brush thickness and chain coverage density on the repulsion between plates are examined.  相似文献   

3.
We consider the electrosteric repulsion of colloidal particles whose surface carries a dense layer of long polyelectrolyte chains (spherical polyelectrolyte brushes). The theory of electrosteric repulsion of star polyelectrolytes developed recently is augmented to include particles with a finite core radius. It is shown that most of the counterions are confined within the brush layer. The strong osmotic pressure thus created within the brush layer dominates the repulsive interaction between two such particles. Because of this the pair interaction potential between spherical polyelectrolyte brushes can be given in terms of an analytic expression. The theoretical predictions are compared with available experimental data and semi-quantitative agreement between the two is found.  相似文献   

4.
The major attribute of polyelectrolyte solutions is that all chains are strongly correlated both electrostatically and topologically. Even in very dilute solutions such that the chains are not interpenetrating, the chains are still strongly correlated. These correlations are manifest in the measured scattering intensity when such solutions are subjected to light, X-ray, and neutron radiation. The behavior of scattering intensity from polyelectrolyte solutions is qualitatively different from that of solutions of uncharged polymers. Using the technique introduced by Sir Sam Edwards, and extending the earlier work by the author on the thermodynamics of polyelectrolyte solutions, extrapolation formulas are derived for the scattering intensity from polyelectrolyte solutions. The emergence of the polyelectrolyte peak and its concentration dependence are derived. The derived theory shows that there are five regimes. Published experimental data from many laboratories are also collected into a master figure and a comparison between the present theory and experiments is presented.  相似文献   

5.
We consider the adsorption of bovine serum albumin (BSA) on spherical polyelectrolyte brushes (SPB). The SPB consist of a solid polystyrene core of 100nm diameter onto which linear polyelectrolyte chains (poly(acrylic acid), (PAA)) are grafted. The adsorption of BSA is studied at a pH of 6.1 at different concentrations of added salt and buffer (MES). We observe strong adsorption of BSA onto the SPB despite the effect that the particles as well as the dissolved BSA are charged negatively. The adsorption of BSA is strongest at low salt concentration and decreases drastically with increasing amounts of added salt. The adsorbed protein can be washed out again by raising the ionic strength. The various driving forces for the adsorption are discussed. It is demonstrated that the main driving force is located in the electrostatic interaction of the protein with the brush layer of the particles. All data show that the SPB present a new class of carrier particles whose interaction with proteins can be tuned in a well-defined manner.  相似文献   

6.
We present a study on the catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes that act as carriers. The spherical polyelectrolyte brushes consist of a solid core of poly(styrene) onto which long chains of poly(2-methylpropenoyloxyethyl) trimethylammonium chloride are grafted. These positively charged chains form a dense layer of polyelectrolytes on the surface of the core particles ("spherical polyelectrolyte brush") that tightly binds divalent PtCl6-(2) ions. The reduction of these ions within the brush layer leads to nearly monodisperse nanoparticles of metallic platinum. The average size of the particles is approximately 2 nm. The composite particles exhibit excellent colloidal stability. The catalytic activity is investigated by photometrically monitoring the reduction of p-nitrophenol by an excess of NaBH4 in the presence of the nanoparticles. The kinetic data could be explained by the assumption of a pseudo-first-order reaction with regard to p-nitrophenol. In all cases, a delay time t0 has been observed, after which the reactions start. This time is shorter when the catalyst has already been used. All data demonstrate that spherical polyelectrolyte brushes present an ideal carrier system for metallic nanoparticles.  相似文献   

7.
赵新军 《高分子科学》2014,32(5):568-576
A theoretical investigation on the pH-induced switching of mixed polyelectrolyte brushes was performed by using a molecular theory. The results indicate that the switching properties of mixed polyelectrolyte brushes are dependent on the pH values. At low pH, negatively charged chains adopt a compact conformation on the bottom of the brush while positively charged chains are highly stretched away from the surface. At high pH values, the inverse transformation takes place. The role of pH determining the polymer chains conformation and charge behavior of mixed polyelectrolyte brushes was analyzed. It is found that there exists a mechanism for reducing strong electrostatic repulsions: stretching of the chains. The H+ and OH- units play a more important role as counterions of the charged polymers do. The collapse of the polyelectrolyte chains for different pH values could be attributed to the screening of the electrostatic interactions and the counterion-mediated attractive interaction along the chains.  相似文献   

8.
An integral equation theory has been used as the basis for studying the structure of dispersions containing charged colloidal particles: globular protein molecules with a nonzero dipole moment, a polyelectrolyte and a low-molecular salt. It is demonstrated that there is an effective attraction between charged colloidal particles, which increases in the presence of charged polymer chains. The influence of the length of polyelectrolyte chains and of salt concentration on the partial structure factor of colloidal particles was studied.  相似文献   

9.
Using Brownian dynamics simulations, we study the effect of the charge ratio, the surfactant length, and the grafting density on the conformational behavior of the complex formed by the polyelectrolyte brush with oppositely charged surfactants. In our simulations, the polyelectrolyte chains and surfactants are represented by a coarse-grained bead-spring model, and the solvent is treated implicitly. It is found that varying the charge ratio induces different morphologies of surfactant aggregates adsorbed onto the brush. At high charge ratios, the density profiles of surfactant monomers indicate that surfactant aggregates exhibit a layer-by-layer arrangement. The surfactant length has a strong effect on the adsorption behavior of surfactants. The lengthening of surfactant leads to a collapsed brush configuration, but a reswelling of the brush with further increasing the surfactant length is observed. The collapse of the brush is attributed to the enhancement of surfactants binding to polyelectrolyte chains. The reswelling is due to an increase in the volume of adsorbed surfactant aggregates. At the largest grafting density investigated, enhanced excluded volume interactions limit the adsorption of surfactant within the polyelectrolyte brush. We also find that end monomers in polyelectrolyte chains exhibit a bimodal distribution in cases of large surfactant lengths and high charge ratios.  相似文献   

10.
We demonstrate that the adsorption of cationic spherical polyelectrolyte brushes (SPB) on negatively charged mica substrates can be controlled in situ by the ionic strength of the suspension. The SPB used in our experiments consist of colloidal core particles made of polystyrene. Long cationic polyelectrolyte chains are grafted onto these cores that have diameters in the range of 100 nm. These particles are suspended in aqueous solution with a fixed ionic strength. Atomic force microscopy (AFM) in suspension as well as in air was used for surface characterization. In pure water the polymer particles exhibit a strong adhesion to the mica surface. AFM investigations of the dry samples show that the particles occupy the identical positions as they did in liquid. They were not removed by the capillary forces within the receding water front during the drying process. The strong interaction between the particles and the mica surface is corroborated by testing the adhesion of individual particles on the dried surface by means of the AFM tip: after a stepwise increase of the force applied to the surface by the AFM tip, the polymer particles still were not removed from the surface, but they were cut through and remained on the substrate. Moreover, in situ AFM measurements showed that particles which adsorb under liquid in a stable manner are easily desorbed from the surface after electrolyte is added to the suspension. This finding is explained by a decreasing attractive particle-substrate interaction, and the removal of the particles from the surface is due to the significant reduction of the activation barrier of the particle desorption. All findings can be explained in terms of the counterion release force.  相似文献   

11.
The interaction between particles in a colloidal system can be significantly affected by their bridging by polyelectrolyte chains. In this paper, the bridging is investigated by using a self-consistent field approach which takes into account the van der Waals interactions between the segments of the polyelectrolyte molecules and the plates, as well as the electrostatic and volume exclusion interactions. A positive contribution to the force between two plates is generated by the van der Waals interactions between the segments and the plates. This positive (repulsive) contribution plays an important role in the force when the distances between the plates are small. With increasing van der Waals interaction strength between segments and plates, the force between the plates becomes more repulsive at small distances and more attractive at large distances. When the surfaces of the plates have a constant surface electrical potential and a charge sign opposite to that of the polyelectrolyte chains, the force between the two plates becomes less attractive as the bulk polyelectrolyte concentration increases. This behavior is due to a higher bulk counterion concentration dissociated from the polyelectrolyte molecules. At short distances, the force between plates is more repulsive for stiffer chains. A comparison between theoretical and experimental results regarding the contraction of the interlayer separation between the platelets of vermiculite clays against the concentration of poly(vinyl methyl ether) was made.  相似文献   

12.
In this work, thermo-responsive polyelectrolyte gels have been simulated using polymer networks of diamond-like topology in the framework of the primitive model. Monte Carlo simulations were performed in the canonical ensemble and a wide collection of situations has been systematically analysed. Unlike previous studies, our model includes an effective solvent-mediated potential for the hydrophobic interaction between non-bonded polymer beads. This model predicts that the strength of the attractive hydrophobic forces increases with temperature, which plays a key role in the explanation of the thermo-shrinking behaviour of many real gels. Although this hydrophobic model is simple (and it could overestimate the interactions at high temperature), our simulation results qualitatively reproduce several features of the swelling behaviour of real gels and microgels reported by experimentalists. This agreement suggests that the effective solvent-mediated polymer-polymer interaction used here is a good candidate for hydrophobic interaction. In addition, our work shows that the functional form of the hydrophobic interaction has a profound influence on the swelling behaviour of polyelectrolyte gels. In particular, systems with weak hydrophobic forces exhibit discontinuous volume changes, whereas gels with strong hydrophobic forces do not show hallmarks of phase transitions, even for highly charged polyelectrolyte chains.  相似文献   

13.
We have performed molecular dynamics simulations of polyelectrolyte adsorption at oppositely charged surfaces from dilute polyelectrolyte solutions. In our simulations, polyelectrolytes were modeled by chains of charged Lennard-Jones particles with explicit counterions. We have studied the effects of the surface charge density, surface charge distribution, solvent quality for the polymer backbone, strength of the short-range interactions between polymers and substrates on the polymer surface coverage, and the thickness of the adsorbed layer. The polymer surface coverage monotonically increases with increasing surface charge density for almost all studied systems except for the system of hydrophilic polyelectrolytes adsorbing at hydrophilic surfaces. In this case the polymer surface coverage saturates at high surface charge densities. This is due to additional monomer-monomer repulsion between adsorbed polymer chains, which becomes important in dense polymeric layers. These interactions also preclude surface overcharging by hydrophilic polyelectrolytes at high surface charge densities. The thickness of the adsorbed layer shows monotonic dependence on the surface charge density for the systems of hydrophobic polyelectrolytes for both hydrophobic and hydrophilic surfaces. Thickness is a decreasing function of the surface charge density in the case of hydrophilic surfaces while it increases with the surface charge density for hydrophobic substrates. Qualitatively different behavior is observed for the thickness of the adsorbed layer of hydrophilic polyelectrolytes at hydrophilic surfaces. In this case, thickness first decreases with increasing surface charge density, then it begins to increase.  相似文献   

14.
We use Fourier Transform infrared spectroscopy (FT-IR) spectroscopy to study the thermal unfolding and refolding behavior of ribonuclease (RNase A) adsorbed to spherical polyelectrolyte brushes (SPB). The SPB consist of a solid poly(styrene) core of ca. 100 nm diameter onto which long chains of poly(styrene sulfonic acid), PSS have been densely attached. The particles bearing the adsorbed protein are dispersed in aqueous buffer solution at a pH close to the isoelectric point (9.6) of the protein. The secondary structure of the protein was analyzed by FT-IR spectroscopy and compared to the structure of the native protein before adsorption. The unfolding of the free RNase A in solution was found to be fully reversible with an unfolding temperature of 65 degrees C, in accordance to previous studies. However, after adsorption to the SPB, the unfolding temperature of the protein molecule is lowered by 10 degrees C and the Van't Hoff enthalpy of the unfolding process is significantly reduced. Moreover the unfolding of the adsorbed protein is irreversible. The phenomenon may be explained by an increase in binding sites due to unfolding of the globular structure. Protein adsorption to a spherical polyelectrolyte brush.  相似文献   

15.
Thermoreversible crosslinking of polyelectrolyte chains via short-range attractions such as hydrogen bonding induced by uncharged or charged particles is studied within the Flory model of ideal association. Electrostatic interactions between the charges at different linking fractions are taken into account by using a generalized random phase approximation approach which includes the network connectivity. We find that at certain concentration of linking agents an infinitely large polymer network is formed. We calculate the structural gelation lines for linkers of different charges and functionalities.  相似文献   

16.
The adsorption of sodium poly(4-styrene sulfonate) on oppositely charged beta-FeOOH particles is studied by electrooptics. The focus of this paper is on the release of condensed counterions from adsorbed polyelectrolyte upon surface charge overcompensation. The fraction of condensed Na+ counterions on the adsorbed polyion surface is estimated according to the theory of Sens and Joanny and it is compared with the fraction of condensed counterions on nonadsorbed polyelectrolyte. The relaxation frequency of the electrooptical effect from the polymer-coated particle is found to depend on the polyelectrolyte molecular weight. This is attributed to polarization of the layer from condensed counterions on the polyion surface, being responsible for creation of the effect from particles covered with highly charged polyelectrolyte. The number of the adsorbed chains is calculated also assuming counterion condensation on the adsorbed polyelectrolyte and semiquantative agreement is found with the result obtained from the condensed counterion polarizability of the polymer-coated particle. Our findings are in line with theoretical predictions that the fraction of condensed counterions remains unchanged due to the adsorption of highly charged polyelectrolyte onto weakly charged substrate.  相似文献   

17.
The adsorption of single polyelectrolyte molecules in shear flow is studied using Brownian dynamics simulations with hydrodynamic interaction (HI). Simulations are performed with bead-rod and bead-spring chains, and electrostatic interactions are incorporated through a screened Coulombic potential with excluded volume accounted for by the repulsive part of a Lennard-Jones potential. A correction to the Rotne-Prager-Yamakawa tensor is derived that accounts for the presence of a planar wall. The simulations show that migration away from an uncharged wall, which is due to bead-wall HI, is enhanced by increases in the strength of flow and intrachain electrostatic repulsion, consistent with kinetic theory predictions. When the wall and polyelectrolyte are oppositely charged, chain behavior depends on the strength of electrostatic screening. For strong screening, chains get depleted from a region close to the wall and the thickness of this depletion layer scales as N(1/3)Wi(2/3) at high Wi, where N is the chain length and Wi is the Weissenberg number. At intermediate screening, bead-wall electrostatic attraction competes with bead-wall HI, and it is found that there is a critical Weissenberg number for desorption which scales as N(-1/2)kappa(-3)(l(B)|sigmaq|)(3/2), where kappa is the inverse screening length, l(B) is the Bjerrum length, sigma is the surface charge density, and q is the bead charge. When the screening is weak, adsorbed chains are observed to align in the vorticity direction at low shear rates due to the effects of repulsive intramolecular interactions. At higher shear rates, the chains align in the flow direction. The simulation method and results of this work are expected to be useful for a number of applications in biophysics and materials science in which polyelectrolyte adsorption plays a key role.  相似文献   

18.
Rotational dynamics and local enrichment of counterions close to polyelectrolyte chains were studied by EPR spectroscopy in solvents of different viscosity. The results confirm previous findings (D. Hinderberger, G. Jeschke, and H. W. Spiess, Macromolecules 2002, 35, 9698) that electrostatic attachment of counterions to the chains is dynamic with lifetimes of contact ion pairs shorter than 1 ns. While in low-viscosity solvents linewidths for a dianionic nitroxide probe and their dependence on polyelectrolyte concentration are dominated by the gradient of local concentration in the vicinity of the chain, they are more strongly influenced by changes in rotational dynamics in a glycerol/water mixture. The slowdown of dynamics at higher viscosity strongly depends on polyelectrolyte concentration, suggesting that the lifetime of the attached state increases. The linewidths of trianionic triarylmethyl probes and of the center line of the nitroxide probes are dominated by local counterion enrichment both at low and high viscosity. Comparison of these linewidths and of the extent to which the lineshapes are non-Lorentzian indicates build-up of larger concentration gradients at higher viscosity.  相似文献   

19.
Summary: If long polyelectrolyte chains are attached densely to colloidal latex particles, a spherical polyelectrolyte brush results. These spherical polyelectrolytes are dispersed in water and carry a high charge. We demonstrate that these systems can be used to immobilize ions of heavy metals, such as gold, as counter‐ions. Reduction of these ions leads to metallic nanoparticles. In this way the brush layer attached to the surface of the particles becomes a “nanoreactor” that may be used for chemical conversions of the metal ions. We show that the reduction of AuClequation/tex2gif-stack-1.gif ions within these nanoreactors leads to well‐defined and rather monodisperse gold nanoparticles that are attached to the surface of the core. A stable dispersion of polymeric core particles with attached nanoparticles results. All results reported here suggest that chemical reactions of ions immobilized in spherical polyelectrolyte brushes provide a new route to composite particles of inorganic and organic materials.

Transmission electron micrograph of gold particles on a core‐shell system.  相似文献   


20.
A single layer of poly(allylamine) with a covalently attached osmium pyridine-bipyridine complex adsorbed onto a Au surface modified by mercaptopropanesulfonate has been studied theoretically with a molecular approach and experimentally by cyclic voltammetry. These investigations have been carried out at different pHs and ionic strengths of the electrolyte solution in contact with the redox polyelectrolyte modified electrode. The theory predicts strong coupling between the acid-base and redox equilibria, particularly for low ionic strength, pH close to the pKa, and high concentration of redox sites. The coupling leads to a decrease in the peak potential at pH values above the apparent pKa of the weak polyelectrolyte, in good agreement with the experimental pH dependence at 4 mM NaNO3. Theoretical calculations suggest that the inflection point in the peak position versus pH curves can be used to estimate the apparent pKa of the amino groups in the polymer. Comparison of the apparent pKa for PAH-Os in the film with that of poly(allylamine) reported in the literature shows that the underlying charged thiol strongly influences charge regulation in the film. A systematic study of the film thickness and the degree of protonation in sulfonate and amino groups for solutions of different pH and ionic strength shows the coupling between the different interactions. It is found that the variation of the film properties has a non-monotonic dependence on bulk pH and salt concentration. For example, the film thickness shows a maximum with electrolyte ionic strength, whose origin is attributed to the balance between electrostatic amino-amino repulsions and amino-sulfonate attractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号