首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of random copolymers poly(3‐ethynylthiophene)‐copoly(2‐(4‐decyloxyphenyl)‐5‐(4‐ethynylphenyl)‐1,3,4‐oxadiazole) with different oxadiazole content ( P2 – P4 ) and homopolymer poly(3‐ethynylthiophene) ( P1 ) as well as poly(2‐(4‐decyloxyphenyl)‐5‐(4‐ethynylphenyl)‐1,3,4‐oxadiazole) ( P5 ) were prepared. The copolymers ( P2 – P4 ) are completely soluble in common organic solvents. The structures and properties of all polymers were characterized and evaluated by FTIR, 1H NMR, 13C NMR, TGA, UV, PL, GPC, and nonlinear optical (NLO) analyses. The incorporation of diaryl‐oxadiazole into polyacetylene‐containing thiophene significantly endows copolymers with higher thermal stability, which may origin from the synergetic effect of the “jacket effect” of diaryl‐oxadiazole units and the effect of retarding or eliminating a few 6π‐electrocycliaztion proceeds of oxadiazole‐containing polyacetylene due to the hindrance of thiophene units. When the copolymer ( P3 ) posses more regular alternating thiophene pendants and oxadiazole pendants arrangement along the polymer backbone, it shows good thermal stability (Td up to 388 °C) and larger third‐order nonlinear optical susceptibility (χ(3) up to 11.0 × 10?11 esu). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

2.
Stimuli‐responsive poly[(N‐isopropylacrylamide‐co‐maleic anhydride)‐g‐poly(ethylene oxide)]/poly(ethylene imine) macrobranched macrocomplexes were synthesized by (1) the radical copolymerization of N‐isopropylacrylamide and maleic anhydride with α,α′‐azobisisobutyronitrile as an initiator in 1,4‐dioxane at 65 °C under a nitrogen atmosphere, (2) the polyesterification (grafting) of prepared poly(N‐isopropylacrylamide‐co‐maleic anhydride) containing less than 20 mol % anhydride units with α‐hydroxy‐ω‐methoxy‐poly(ethylene oxide)s having different number‐average molecular weights (Mn = 4000, 10,000, or 20,000), and (3) the incorporation of macrobranched copolymers with poly(ethylene imine) (Mn = 60,000). The composition and structure of the synthesized copolymer systems were determined by Fourier transform infrared, 1H and 13C NMR spectroscopy, and chemical and elemental analyses. The important properties of the copolymer systems (e.g., the viscosity, thermal and pH sensitivities, and lower critical solution temperature behavior) changed with increases in the molecular weight, composition, and length of the macrobranched hydrophobic domains. These copolymers with reactive anhydride and carboxylic groups were used for the stabilization of penicillin G acylase (PGA). The conjugation of the enzyme with the copolymers significantly increased the thermal stability of PGA (three times at 45 °C and two times at 65 °C). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1580–1593, 2003  相似文献   

3.
We have used Grignard metathesis polymerization to prepare poly(3‐hexylthiophene)‐based copolymers containing electron‐withdrawing 4‐tert‐butylphenyl‐1,3,4‐oxadiazole‐phenyl moieties as side chains. We characterized these copolymers using 1H and 13C nuclear magnetic resonance spectroscopy, thermogravimetric analysis, and gel permeation chromatography. The band gap energy of copolymer was determined from the onset of the optical absorption. The quenching effects were observed in the photoluminescence spectra of the copolymers incorporating pendant electron‐deficient 1,3,4‐oxadiazole moieties on the side chains. The photocurrents of devices were enhanced in the presence of an optimal amount of the 1,3,4‐oxadiazole moieties, thereby leading to improved power conversion efficiencies. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3331–3339, 2010  相似文献   

4.
A novel synthetic procedure for the preparation of poly(oxadiazole)s was developed with nucleophilic substitution of α,ω-alkanediols with oxadiazole-activated bisfluoride. Seven poly(oxadiazole)s were successfully prepared by the solution polymerization of 2,5-bis(4-fluorophenyl)-1,3,4-oxadiazole and various α,ω-alkanediols [HO (CH2)n OH, n = 5–10 or 12] in diphenyl sulfone at temperature greater than 230 °C with K2CO3 as a catalyst. The reduced viscosities of the poly(oxadiazole)s were 0.14–0.51 dL/g, and the decomposition temperatures were greater than 350 °C and decreased from 436 to 379 °C with increasing spacer length (n). Corresponding model compounds, consisting of two terminal mesogenic 2,5-bisphenyl-1,3,4-oxadiazole units and central poly(methylene) spacers, were also prepared for comparison. Both the polymers and model compounds exhibited an extraordinary odd–even effect: odd ones showed higher transition temperatures (melting and clearing temperatures). With differential scanning calorimetry, polarized optical microscopy (POM), and X-ray diffraction, we found that the nematic mesophase was the only texture in the melts except for the polymers with longer methylene units (n = 9), in which smectic mesophases were observed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 293–301, 2002  相似文献   

5.
3-Methyl-(E)-stilbene (3MSti) and 4-(diethylamino)-(E)-stilbene (DEASti) monomers are synthesized and polymerized separately with maleic anhydride (MAn) in a strictly alternating fashion using reversible addition-fragmentation chain transfer (RAFT) polymerization techniques. The optimal RAFT chain transfer agents (CTAs) for each copolymerization affect the reaction kinetics and CTA compatibilities. Psuedo-first order polymerization kinetics are demonstrated for the synthesis of poly((3-methyl-(E)-stilbene)-alt-maleic anhydride) (3MSti-alt-MAn) with a thiocarbonylthio CTA (methyl 2-(dodecylthiocarbonothioylthio)−2-methylpropionate, TTCMe). In contrast, a dithioester CTA (cumyl dithiobenzoate, CDB) controls the synthesis of poly((4-(diethylamino)-(E)-stilbene)-alt-maleic anhydride) (DEASti-alt-MAn) with pseudo-first order polymerization kinetics. DEASti-alt-MAn is chain extended with 4-acryloylmorpholine (ACMO) to synthesize diblock copolymers and subsequently converted to a double hydrophilic polyampholyte block copolymers (poly((4-(diethylamino)-(E)-stilbene)-alt-maleic acid))-b-acryloylmorpholine) (DEASti-alt-MA)-b-ACMO) via acid hydrolysis. The isoelectric point and dissociation behavior of these maleic acid-containing copolymers are determined using ζ-potential and acid–base titrations, respectively. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 219–227  相似文献   

6.
ABSTRACT

A-B Type block copolymer of N-vinylpyrrolidone (NVP) and 4-vinylpyridine (VPy) [poly(NVP-b-VPy) and graft copolymers of VPy onto copolymers of NVP with 4-vinylbenzyl N,N-diethyldithiocarbamate (VBDC) [poly(NVP-g-VPy) were synthesized by the iniferter method. the compatibility between NVP and VPy units in the copolymers was evaluated from the glass transition temperature of these copolymers. Hydroquinone was then oxidized by the synthesized NVP-VPy copolymers-Cu(II) complex catalysts. the influence of the distribution of each monomer unit in copolymers on the catalytic activity was studied by comparing the activity of these copolymers. the catalytic activity of these copolymers increased in the order: NVP-VPy blend polymer, poly(NVP-b-VPy), poly(NVP-g-VPy), random copolymer [poly(NVP-ran-VPy)]. This order parallels the compatibility between NVP units and VPy units in these copolymers.  相似文献   

7.
The polycondensation of L -aspartic acid ( ASP ) with 6-aminocaproic acid ( ACA ) using o-phosphoric acid produced poly(succinimide-co-6-aminocaproic acid). The yield of the MeOH-insoluble copolymer decreased from 99 to 52% and that of the MeOH-soluble one increased from 9 to 47%, with increasing molar ratio of ACA in the monomer feed. The compositions of the succinimide ( SCI ) unit in the MeOH -insoluble and -soluble copolymers tended to be higher than those of ASP in the monomer feed. The copolymers with the 35 mol % SCI units or above were soluble in DMSO , DMF , and conc- H2SO4 , but those with the 20 and 21 mol % SCI units were soluble only in conc-H2SO4. The melting temperature appeared for the copolymers with less than 76 mol % SCI units. Poly(succinimide-co-6-aminocaproic acid) was easily hydrolyzed to yield poly(aspartic acid-co-6-aminocaproic acid), and it exhibited biodegradability toward activated sludge. © 1997 John Wiley & Sons, Inc.  相似文献   

8.
Copolymers of 4-tert-butoxycarbonyloxystyrene (BOS) and 9-fluorenilideneimino p-styrenesulfonate (FISS) were synthesized. FISS units in copolymers became p-styrenesulfonic acid units upon ultraviolet irradiation. The irradiated copolymers thermally decomposed to poly(hydroxystyrene) by liberating tert-butoxycarbonyl (BOC) units at temperatures where the unirradiated copolymers were stable. The thermal decomposition of the copolymers catalyzed by sulfonic acid formed photochemically was studied by thermogravimetry. The pseudo first-order rate constant (k) and the activation energy for the acid catalyzed thermal decomposition of BOC units in copolymers were evaluated. The thermolysis of the irradiated copolymer system was compared with that of the irradiated blended system of poly(4-tert-butoxycarbonyloxystyrene) (PBOCST) and 9-fluorenilideneimino p-toluene-sulfonate (FITS). © 1993 John Wiley & Sons, Inc.  相似文献   

9.
The syntheses of several monomers, bioactive poly[(3, 4-dihydro-2H-pyran)-alt-(maleic anhydride)] and its derivatives, which have different substituents (e.g., acetoxy, methoxy, ethoxy, methoxycarbonyl, formyl, acetoxymethyl, and tosyloxymethyl groups) in the 2-position of the tetrahydropyran ring of the copolymer backbone, are described. The alternating sequences in copolymers of the dihydropyran derivatives and maleic anhydride were obtained from the equimolar and larger ratios of maleic anhydride to dihydropyran derivative at the onset of the copolymerization. The molecular weights of the copolymers were found to be low (Mn = 1000–7500) due to a transfer reaction of the dihydropyran derivatives. Hydrolyses of the anhydride groups in the copolymers without catalyst afforded poly[(dihydropyran)-alt-(maleic acid)] and its derivatives, whereas an additional three copolymers having substituents, e.g., hydroxy, hydroxymethyl, and carboxyl groups were obtained by hydrolyses of the pendent groups (acetoxy, acetoxymethyl, and methoxycarbonyl) with the aid of a hydroxide catalyst. Carbamoyl groups on the polymers were obtained from ammonolysis of methoxycarbonyl groups. The polymers having mercaptomethyl or aminomethyl groups were obtained by substitution of hydrogen sulfide or ammonia for tosyloxylmethyl groups.  相似文献   

10.
Synthesis of poly(styrene-b-tetrahydrofuran (THF)-b-styrene) triblock copolymers was performed by transformation from living cationic into living radical polymerization, using 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (4-hydroxy-TEMPO) as a transforming agent. Sodium 4-oxy-TEMPO, derived from 4-hydroxy-TEMPO, reacted with the living poly(THF), which was prepared by cationic polymerization of THF using trifluoromethanesulfonic acid anhydride as an initiator, resulting in quantitative formation of the poly(THF) with TEMPO at both the chain ends. The resulting polymers were able to serve as a polymeric counter radical for the radical polymerization of styrene by benzoyl peroxide, to give the corresponding triblock copolymer in quantitative efficiency. The polymerization was found to proceed in accordance with a living mechanism, because the conversion of styrene linearly increased over time, and the molar ratio of styrene to THF units in the copolymer also increased as a result of increasing the conversion. The TEM pictures demonstrated that the resulting copolymers promoted microphase segregation. It was found that the films of these copolymers showed contact angles intermediate between those of poly(THF) and of polystyrene. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2059–2068, 1998  相似文献   

11.
Syndiotactic poly(methylallylalcohol) is fully esterified with Nα-protected (L )-histidine by carbodiimide in pyridine to yield the corresponding homopolymers, i.e., Nα-protected 2-methylallyl-(L )-histidinate monomer units and unreacted 2-methylallyl alcohol units are obtained, which in a second exhaustive esterification step are reacted with Nα-(benzyloxycarbonyl)-(L )-aspartic acid anhydride. The resulting copolymers consist of Nα-protected 2-methylallyl-(L )-histidinate and 2-methylally-Nα-(benzyloxycarbonyl)-(L )-hydrogen-α-aspartate monomer units. They are polyampholytes containing both imidazole and carboxyl groups. The structure, including composition of the copolymers, is determined by 1H- and 13C-NMR, while water solubility and apparent pKaa values are investigated by potentiometry.  相似文献   

12.
The mechanism of copolymerization of monomethyl and dimethyl maleates and fumarates with styrene was studied by analysis of the conformation of the acid units of the resulting copolymers. The absorption bands for C?O stretching and OH stretching in the spectra of the copolymers are fully identical. They are quite different from the spectra of the copolymers obtained from maleic anhydride and styrene that are subsequently treated with absolute methanol to give the monoester which is then esterified with diazomethane to give the diester. The acid units of the copolymers derived from maleic anhydride exist in a gauche configuration; copolymers derived from fumaric units exist in a trans conformation. The identity of copolymers derived from maleic units with those derived from fumaric units but not with those derived from maleic anhydride indicates that the first step in the copolymerization of the maleic units is an isomerization to fumaric units, which are actually the genuine comonomers.  相似文献   

13.
To synthesize polyesters and periodic copolymers catalyzed by nonafluorobutanesulfonimide (Nf2NH), we performed ring‐opening copolymerizations of cyclic anhydrides with tetrahydrofuran (THF) at 50–120 °C. At high temperature (100–120 °C), the cyclic anhydrides, such as succinic anhydride (SAn), glutaric anhydride (GAn), phthalic anhydride (PAn), maleic anhydride (MAn), and citraconic anhydride (CAn), copolymerized with THF via ring‐opening to produce polyesters (Mn = 0.8–6.8 × 103, Mn/Mw = 2.03–3.51). Ether units were temporarily formed during this copolymerization and subsequently, the ether units were transformed into esters by chain transfer reaction, thus giving the corresponding polyester. On the other hand, at low temperature (25–50 °C), ring‐opening copolymerizations of the cyclic anhydrides with THF produced poly(ester‐ether) (Mn = 3.4–12.1 × 103, Mw/Mn = 1.44–2.10). NMR and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectra revealed that when toluene (4 M) was used as a solvent, GAn reacted with THF (unit ratio: 1:2) to produce periodic copolymers (Mn = 5.9 × 103, Mw/Mn = 2.10). We have also performed model reactions to delineate the mechanism by which periodic copolymers containing both ester and ether units were transformed into polyesters by raising the reaction temperature to 120 °C. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Rates of volatilisation and chain scission have been measured in the thermal degradation, photodegradation in solution, photodegradation in thin films and photothermal degradation of poly(methyl methacrylate) and a series of copolymers of methyl methacrylate with maleic anhydride. In each case the rate of volatilisation is depressed by the maleic anhydride units. On the other hand, rates of chain scission are accelerated by maleic anhydride except in the case of photothermal degradation. These results are discussed from a mechanistic point of view.  相似文献   

15.
Melting points and lamellar thicknesses have been measured for ethylene oxide–propylene oxide block copolymers (sym-PEP) with central poly(ethylene oxide) block lengths of 70–100 chain units and end poly(propylene oxide) block lengths of 0–30 chain units. Melting points of the block copolymers are lower than those of the corresponding poly(ethylene oxide) homopolymer by an amount (up to 15°C) which increases as the poly(propylene oxide) block length increases. Most samples have more than one melting transition, which can be assigned to variously folded chain crystals. End interfacial free energies σe for the various crystals have been estimated by use of Flory's theory of melting of block copolymers. For a given crystal type (e.g., once-folded-chain) σe is higher the longer the chain length of the end poly(propylene oxide) blocks. For a given copolymer σe is lower, the more highly folded the poly(ethylene oxide) chain.  相似文献   

16.
Contact angles θ of liquids of different polarity were measured on a series of mixtures of solid high polymers and a series of copolymers. The mixtures were composed of an alternating poly(ethylene-co-maleic anhydride) (EMA), and its addition product with n-octadecylamine, poly(ethylene-co-N-n-octadecylmaleamic acid) (EOM). The co-polymers were composed of the same monomeric units as the mixtures. The surface tension γs of EOM, calculated from θ by the Good-Fowkes-Owens-Wendt treatment, decreased slightly with increasing molecular weights and then reached a limiting value. Plots of γs against EOM concentration indicated large negative excess surface tension of the units with lower surface tension, EOM, in both series studied. For the mixture series, γa first sharply decreased with the EOM concentration; then it reached a limiting value, the γs of pure EOM, at a very low EOM concentration. This indicates phase separation of the two polymers, and the thickness of a monomolecular surface layer was calculated from these data. For the copolymers, γs varied logarithmically with the EOM concentration. Throughout the whole concentration range, the data fitted the equation developed by Belton and Evans for ideal mixtures.  相似文献   

17.
Two new aromatic poly(amide‐hydrazide)s (PAHs)‐bearing electroactive pyrenylamine units in the backbone were prepared from the phosphorylation polycondensation reactions of N,N‐di(4‐carboxyphenyl)‐1‐aminopyrene ( 1 ) with p‐aminobenzoyl hydrazide (p‐ABH) and m‐aminobenzoyl hydrazide (m‐ABH), respectively. The PAHs could be further cyclodehydrated into the corresponding poly(amide‐1,3,4‐oxadiazole)s in the range of 300–400 °C in the solid film state. All the hydrazide and oxadiazole polymers were soluble in many polar organic solvents and could afford flexible and strong films via solution casting. The poly(amide‐1,3,4‐oxdiazole)s had high glass‐transition temperatures (294–309 °C) and high thermal stability (10% weight‐loss temperature in excess of 520 °C). The dilute solutions of all the hydrazide and oxadiazole polymers showed strong fluorescence with emission maxima around 457–459 nm in the blue region. Copolymers obtained from the polycondensation of equimolar mixture of diacid 1 and 4,4′‐oxydibenzoic acid with p‐ABH or m‐ABH exhibited a significantly increased fluorescence quantum efficiency in comparison with the homopolymers. Cyclic voltammetry results indicated that all the hydrazide and oxadiazole polymers exhibited an ambipolar (n‐ and p‐doping processes) and electrochromic behavior. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

18.
Three random copolymers ( P1–P3 ) comprising phenylenevinylene and electron‐transporting aromatic 1,3,4‐oxadiazole segments (11, 18, 28 mol %, respectively) were prepared by Gilch polymerization to investigate the influence of oxadiazole content on their photophysical, electrochemical, and electroluminescent properties. For comparative study, homopolymer poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐p‐phenylenevinylene] ( P0 ) was also prepared by the same process. The polymers ( P0–P3 ) are soluble in common organic solvents and thermally stable up to 410 °C under a nitrogen atmosphere. Their optical properties were investigated by absorption and photoluminescence spectroscopy. The optical results reveal that the aromatic 1,3,4‐oxadiazole chromophores in P1–P3 suppress the intermolecular interactions. The HOMO and LUMO levels of these polymers were estimated from their cyclic voltammograms. The HOMO levels of P0–P3 are very similar (?5.02 to ?5.03 eV), whereas their LUMO levels decrease readily with increasing oxadiazole content (?2.7, ?3.08, ?3.11, and ?3.19 eV, respectively). Therefore, the electron affinity of the poly(p‐phenylenevinylene) chain can be gradually enhanced by incorporating 1,3,4‐oxadiazole segments. Among the polymers, P1 (11 mol % 1,3,4‐oxadiazole) shows the best EL performance (maximal luminance: 3490 cd/m2, maximal current efficiency: 0.1 cd/A). Further increase in oxadiazole content results in micro‐phase separation that leads to performance deterioration. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4377–4388, 2007  相似文献   

19.
This article discusses a new chemical route to prepare maleic anhydride (MA) grafted polyethylene and polypropylene polymers with controlled molecular structure, that is, MA grafted content and polymer molecular weight and composition distributions. The chemistry involves a free radical graft reaction of maleic anhydride with poly(ethylene‐co‐p‐methylstyrene) and poly(propylene‐co‐p‐methylstyrene) copolymers. Under a suspension reaction condition, the grafting reaction takes place selectively on the p‐methylstyrene units in the copolymer, due to high reactivity of p‐methyl group and favorable mixing between p‐methylstyrene units and chemical reagents in the swollen amorphous phases. The resulting polymer shows no detectable molecular weight change during the reaction, and the MA grafted content increases with the increase of initiator and p‐methylstyrene concentrations. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1337–1343, 2000  相似文献   

20.
Stilbene-maleic anhydride is a well-known donor-acceptor comonomer pair which undergoes free radical copolymerization to form an alternating copolymer. A series of methyl substituted stilbenes were synthesized and copolymerized with maleic anhydride. A conversion versus time study was undertaken to understand the methyl substituent effect on copolymerization rates. Methyl substituents on the phenyl ring of stilbene can change the reactivity of stilbene by changing the resonance stability of the propagating radical and steric hindrance in the propagation step and thereby change the copolymerization rate. Methyl substituted stilbene-maleic anhydride copolymers were determined by quantitative 13C 1D NMR to be alternating copolymers. Size exclusion chromatography (SEC) measurements showed that the weight-average molecular weights of these copolymers varied from 3000 to over 1,000,000 g/mol. Interchain aggregation was observed in poly((E)-4-methylstilbene-alt-maleic anhydride) by dynamic light scattering (DLS). The SEC trace for poly((E)-4-methylstilbene-alt-maleic anhydride) exhibited bimodal peaks. No glass transition temperature or crystalline melting temperature was observed between 0 °C and 250 °C by differential scanning calorimetry (DSC). Thermogravimetric analysis (TGA) showed that these polymers have 5% weight loss around 290 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号