首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
郭斌  单雯雯  罗江山  唐永建  程建平 《化学学报》2008,66(12):1435-1440
用紫外光辐照氯金酸、聚乙烯吡咯烷酮(PVP)和纳米金种子的混合溶液, 在室温下用30 min制备出尺度小于100 nm的截角三角形或六边形金纳米盘. X射线能谱和衍射分析表明粒子是以{111}面为盘状面的高纯面心立方金单晶, 红外透射光谱表明金粒子与PVP之间存在作用. 产物的可见吸收光谱表现出纳米盘的各向异性表面等离子体共振吸收峰. 不同实验条件下产物的吸收光谱分析表明: PVP起还原剂和包覆剂的作用; 高强度紫外光加速了反应进行; 种子对反应具有催化作用; 种子的加入量有最佳值, 在该值下纳米盘平均尺度最大(达80 nm), 吸收谱上的面内偶极共振峰位于950 nm处; 种子的加入量超过该值时, 纳米盘尺度变小, 面内偶极共振峰发生蓝移.  相似文献   

2.
溶剂热法制备银纳米晶   总被引:1,自引:0,他引:1  
邢瑞敏  安彩霞  刘锦 《化学研究》2011,(5):63-65,69
以聚乙烯吡咯烷酮(PVP)作为表面活性剂,利用乙二醇溶剂热法成功制备了银纳米颗粒;利用场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)分析了样品的形貌和晶体结构,并考察了溶剂组成等因素对银纳米颗粒形貌的影响.研究结果表明所得银纳米晶粒径均一,直径约为90nm;增大PVP的加入量会降低产物的粒径,溶剂中水的引入会影响银纳米晶的形貌.  相似文献   

3.
以抗坏血酸为还原剂,柠檬酸为结构导向剂,一步还原硝酸银,合成了尺寸和形状可调的花状银颗粒。纳米粒子的粒径可在600~1 200 nm范围内调整,表面突起可达到10~25 nm。柠檬酸的化学性质在银纳米粒子合成多级花状银结构的过程中起着至关重要的作用。通过改变柠檬酸或抗坏血酸溶液的用量,银结构的各向异性形貌可以很容易地调节。以制备的多级花状银颗粒作为表面增强拉曼散射(SERS)基底,对浓度为10~(-10)mol·L~(-1)的罗丹明6G(R6G)仍具有较高的检测灵敏度。  相似文献   

4.
表面增强拉曼散射(SERS)被用于检测细菌芽孢中的一种重要的标志物吡啶2,6-二羧酸(DPA)。以聚乙烯吡咯烷酮(PVP)为粘合剂,将60 nm的金粒子组装到表面打磨光滑的金电极上,制备稳定、灵敏的SERS基底。通过不同pH值下吸附在金基底上的DPA的SERS特征,考察DPA分子吸附构型发生的变化,并分析酸根离子对其吸附的影响。结果表明:在强酸条件下,DPA在Au NPs/PVP/Au基底上的SERS信号能达到最大增强;当pH值大于DPA二级解离常数时,DPA的SERS特征逐渐减弱。在DPA中引入不同酸根盐时,后者会取代纳米金表面的柠檬酸根所占的部分位点,改变Au NPs-Au基底的SERS增强性能。3种酸根吸附性能不同,所以获得的光谱强度存在差异。  相似文献   

5.
Au-Ag三角纳米环单层膜的原位转化制备及 SERS效应   总被引:3,自引:2,他引:1  
利用模板牺牲氧化还原反应将自组装在基片上的三角板银纳米粒子(边长约为79.2 nm)与氯金酸溶液作用进而原位转化形成三角纳米环. 通过紫外-可见(UV-Vis)光谱实时监测基片上银三角板纳米粒子在反应不同阶段的消光特性; 扫描电子显微镜(SEM)显示了银三角板纳米粒子转化过程的形貌变化; 利用X射线光电子能谱(XPS)对其成分进行分析. 表征结果表明, 三角纳米环的成分为Au-Ag合金或复合物; 随着基片与氯金酸溶液作用时间的增加, 自组装膜的表面等离子体共振峰逐渐红移; Au-Ag三角环状纳米粒子的平均壁厚度从29.3 nm缩小至16.2 nm. 以4-巯基苯胺(4-ATP)为探针分子研究了该Au-Ag三角环状纳米粒子单层膜的表面增强拉曼(SERS)活性. 自组装单层膜基底的SERS信号随着Au-Ag三角纳米环平均壁厚度的增加逐渐增强.  相似文献   

6.
采用化学沉积法制备了表面增强拉曼散射光谱(SERS)银镜基底,用NaCl溶液与HCl溶液除去银镜表面杂质后,通过扫描电子显微镜对基底进行了表征,表明该基底表面的银纳米粒子平均粒径约为200 nm,以对巯基苯胺为探针分子测得其增强因子为4.6×105.利用表面增强拉曼光谱及表面吸附选择定律研究了广谱抗菌药呋喃唑酮在该基底表面的吸附状态,证明呋喃唑酮分子主要是通过CN吸附于银纳米粒子表面的.  相似文献   

7.
边长为微米级的银纳米片的简易合成与形成机理   总被引:2,自引:0,他引:2  
用低温(60 ℃)溶剂热法, 以N,N-二甲基甲酰胺(DMF)为主还原剂和溶剂, 以聚乙烯吡咯烷酮(PVP)为辅助还原剂和晶面生长控制剂, 以硝酸银为前驱物, 大量制备了高纯度的、边长为微米级、宽厚比≥10的单晶银纳米片. 采用粉末X射线衍射(PXRD)、场发射扫描电镜(FE-SEM)、透射电子显微镜(TEM)等表征和分析了合成产物的成分、形貌和结构. 结果表明, 合成的银纳米片为面心立方单晶, 边长为1-4 μm, 厚度为50-100 nm. 考察了不同溶剂对银纳米结构的影响, 并提出了大尺寸的银纳米片的形成机理. 本文为调控单晶银纳米片的边长和宽厚比提供了一种新的可靠的动力学方法, 制备的长边长、大宽厚比的单晶银纳米片在聚合物基导电复合材料和电磁屏蔽材料方面有潜在的重要应用.  相似文献   

8.
以聚乙烯吡咯烷酮(poly(vinylpyrrolidone), PVP)为保护剂, 硼氢化钠为还原剂, 合成了尺寸为(1.9±0.4) nm的单分散金胶体, 再以其作为一级晶种, 并分别用抗坏血酸和PVP为还原剂和保护剂, 通过改变各步晶种尺寸和氯金酸与晶种的摩尔比分步逐级合成了尺寸为3.2、4.7、6.3、8.0、10.3、14.0 nm的系列金纳米颗粒. 以LaMer模型为基础, 对分步晶种生长过程中影响金胶体产物尺寸分布(单分散性)的主要因素进行了讨论. 缓慢加入抗坏血酸并降低氯金酸对晶种的相对量对于单分散金纳米颗粒的控制合成有决定性作用. 快速加入抗坏血酸会因二次成核而导致金颗粒尺寸分布范围变宽.  相似文献   

9.
金银合金纳米粒子表面处理及其表面增强拉曼光谱研究   总被引:1,自引:0,他引:1  
金毅亮  秦维  蒋芸  王梅  姚建林  黄洁  顾仁敖 《化学学报》2008,66(22):2494-2498
采用水合肼还原的方法制备了金银比例为1∶1的金银合金纳米粒子, 紫外可见吸收光谱显示合成的溶胶只有一个介于金和银之间的吸收峰, 证明了合金结构的形成. 通过氨基耦联方法将合金纳米粒子组装到硅片表面, 利用氯金酸与合金中银的反应对基底上合金纳米粒子表面进行了改性处理. 以吡啶为探针分子, 研究了表面处理前后基底的SERS效应的差别, 结果表明随着浸泡时间延长, 信号强度先逐渐增强后降低至不变, 这与合金纳米粒子表面结构的变化有关, 氯金酸与表面银的反应经历了两个过程, 即粒子表面形成小的孔洞(去合金过程)和AgCl(s)在粒子表面的沉积, 前者有利于SERS效应的提高, 而后者导致SERS效应快速衰减.  相似文献   

10.
通过在聚酰亚胺(PI)膜表面进行氧等离子体刻蚀得到纳米棒阵列,并溅射Ag膜形成了覆银聚酰亚胺纳米棒阵列。利用该方法能够简单快捷地制备出具有较强活性且结构可调的表面增强拉曼散射(SERS)衬底。通过改变氧等离子体刻蚀时间和溅射Ag膜厚度可以调节覆银PI纳米棒的间隙、密度和直径。通过对探针分子尼罗兰(NB)测试表征了覆银PI纳米棒衬底的SERS增强能力。通过改变氧等离子体刻蚀时间和Ag膜溅射厚度实现了衬底SERS增强能力的调节。在氧等离子体刻蚀时间为30 s和溅射Ag膜厚度为70 nm时,衬底的SERS增强能力达到最强,并且其拉曼信号展现出较好的一致性。  相似文献   

11.
Silver nanoplates, with average size tunable from 50 to 500 nm, have been synthesized via a simple room-temperature tannic acid (TA) solution-phase chemical reduction method. The synthesis was a seedless process in which tannic acid was used as a reducing as well as a capping agent, and did not need any other surfactant or capping agent to direct the anisotropic growth of the silver nanoparticles. The morphology of silver nanoplates has been confirmed by transmission electron microscopy, the growth process of nanoplates has been studied by UV/vis spectroscopy. Control experiments have been explored for a more thorough understanding of the growth mechanism. It was found that both the concentrations of TA and the pH of solution were the key elements to control the morphology silver nanoplates. The optical in-plane dipole plasmon resonance bands of these silver plates could be tuned from 520 to 1100 nm.  相似文献   

12.
Four different sizes of citrate-protected silver nanoplates with the corresponding in-plane dipole resonance band at 530, 619, 778, and 858 nm, respectively, are synthesized for surface-enhanced Raman scattering (SERS) study. Their aggregation behaviors are monitored by use of UV-vis spectroscopy. During the aggregation process, a marked red shift of the in-plane dipole resonance of silver nanoplates is observed, whereas other resonance modes of them only have small alterations in the site or intensity. Aggregated silver nanoplates can serve as active SERS substrates with an enhancement factor of about 4.5 x 10(5) using 2-aminothiophenol as a probing molecule. The SERS performance of silver nanoplates is even superior to the commonly used Lee-Meisel silver colloid, making them very attractive for SERS applications.  相似文献   

13.
Silver nanoparticles can be prepared by using a seed‐free photo‐assisted citrate reduction method under the irradiation of a sodium lamp. Under the same irradiation intensity, bath temperatures are crucial in influencing the reaction rate, morphologies of final products, and shape evolution of the silver nanostructures. For example, when the bath temperature is 80 °C, the product yields of silver nanoplates, nanorods, and nanodecahedra are 38±6 %, 35±10 %, and 12±8 %, respectively. However, when the bath temperature is 30 °C, the product yields of silver nanoplates, nanorods, and nanodecahedra are 6±3 %, 0 %, and 83±16 %, respectively. Time‐dependent UV/Vis spectra and TEM images show that silver nanoplates were formed at the earlier reaction stage and greatly decreased in amount at the later stage when the bath temperatures are less than or equal to 40 °C. This indicates that the silver nanoplates, which can be regarded as intermediates, are kinetically favored products. They are not thermodynamically favored products at these relatively low bath temperatures. The SERS spectra of crystal violet (CV) show that all the silver colloids synthesized at various temperatures exhibit good enhancement factors and that the colloids prepared at lower bath temperatures have a higher enhancement factor.  相似文献   

14.
金属纳米材料具有不同于宏观块体材料的特殊性质. 在银纳米结构中, 银纳米片因其独特的形貌依赖光学性质备受关注, 该特性已在离子检测、分子染色、表面增强拉曼光谱(SERS)、表面荧光增强、生物医学等领域显示了重要应用价值. 本文从银纳米片的制备方法入手, 首先综述了银纳米片的各种制备方法以及实验条件(如光照的波长、表面活性剂种类、还原剂种类)对产物形貌的影响. 其次介绍了银纳米片的奇特光学性质, 总结了银纳米片的几种重要生长机制, 最后介绍了银纳米片的应用价值, 并对银纳米片的研究前景做了展望.  相似文献   

15.
Jiang LP  Xu S  Zhu JM  Zhang JR  Zhu JJ  Chen HY 《Inorganic chemistry》2004,43(19):5877-5883
A simple sonochemical route was developed for the crystal growth of uniform silver nanoplates and ringlike gold nanocrystals in a N,N-dimethylformamide solution. The platelike structures were generated from the selective growth on different crystal planes in the presence of poly(vinylpyrrolidone) and the ultrasonic-assisted Ostwald ripening processes. The silver nanoplates in solution served as the templates for the synthesis of ringlike gold crystals via a displacement reaction. Both the silver nanoplates and gold nanorings were highly oriented single crystals with (111) planes as the basal planes.  相似文献   

16.
有机分子CTAB对银纳米颗粒形貌的影响   总被引:2,自引:0,他引:2  
报道了一种有效调节银纳米颗粒形貌的特殊方法.在不同浓度的CTAB有机分子作用下,片状三角形银纳米颗粒形貌发生改变,形成圆形和纺锤形等特殊形貌的银纳米片,研究了CTAB浓度对银纳米颗粒形貌的影响,从实验结果分析了银纳米颗粒形貌发生改变的主要因素.  相似文献   

17.
In this work we have carried out systematic studies and identified the critical role of hydrogen peroxide instead of the generally believed citrate in the well-known chemical reduction route to silver nanoplates. This improved understanding allows us to develop consistently reproducible processes for the synthesis of nanoplates with high efficiency and yields. By harnessing the oxidative power of H(2)O(2), various silver sources including silver salts and metallic silver can be directly converted to nanoplates with the assistance of an appropriate capping ligand, thus significantly enhancing the reproducibility of the synthesis. Contrary to the previous conclusion that citrate is the key component, we have determined that the group of ligands with selective adhesion to Ag (111) facets can be expanded to many di- and tricarboxylate compounds whose two nearest carboxylate groups are separated by two or three carbon atoms. We have also found that the widely used secondary ligand polyvinylpyrrolidone can be replaced by many hydroxyl group-containing compounds or even removed entirely while still producing nanoplates of excellent uniformity and stability. In addition to the general understanding of NaBH(4) as a reducing agent, it has also been found to act as a capping agent to stabilize the silver nanoparticles, prolong the initiation time required for nanoplate nucleation, and contribute to the control of the thickness as well as the aspect ratio of silver nanoplates. The improved insight into the specific roles of the reaction components and significantly enhanced reproducibility are expected to help elucidate the formation mechanism of this interesting nanostructure.  相似文献   

18.
三角形银纳米片的合成及其影响因素   总被引:9,自引:0,他引:9  
报道了一种在不需光照的条件下制备三角形银纳米片的新方法.在表面活性剂BRIJ35存在下,将硝酸银用硼氢化钠和柠檬酸钠还原,在不同温度范围内反应形成各种尺度的三角形银纳米片,探讨了硼氢化钠浓度、BRIJ35浓度和表面活性剂的种类和溶液pH值等因素对银纳米颗粒形貌和尺寸的影响.  相似文献   

19.
The reaction between silver nitrate and poly(N-vinyl-2-pyrrolidone) (PVP) in pyridine at ambient conditions could lead to the formation of spherical nanoparticles or quadrilateral and triangular silver nanoplates, depending on the silver-to-PVP ratio used. It is proposed that the spherical Ag nanoparticles, which were formed early in the reaction, were transformed into nanoplates through an Ostwald ripening process driven by the bridging flocculation of small spherical Ag nanoparticles. This unique and hitherto unreported shape evolution process was carefully followed by a combination of techniques, viz., UV-visible spectroscopy, TEM, and powder X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号