首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Abstract— A 15 ns, tunable dye laser was used to induce germination of the photoblastic seeds of Lactuca sativa. One red laser flash in the range from 620 to 690 nm was sufficient to increase germination significantly above the dark level. Repeated flashes, however, were necessary to saturate the physiological response. The wavelength dependence for induction of germination differed for single and repetitive flashes. After saturating far-red irradiation, the effect of single-flash induction was a function primarily of the absorption spectrum of Pr. In addition, the establishment within the lifetime of a flash of a photochromic system between the red absorbing form of phytochrome (Pr) and the sum of photoreversible intermediate forms (ΣI700) contributes to this wavelength dependence at high fluence rates. This photochromic system is assumed to be shifted significantly toward Pr by wavelengths 660 nm. Similarly, a strong double-flash effect, which is seen as an increase in effectiveness when a given total fluence is provided by two consecutive flashes rather than by one flash only, is restricted to those wavelengths that considerably shift the photochromic system Pr?ΣI700 toward Pr. Finally, the saturation level produced by a series of laser flashes depends, additionally, on absorption by Pfr.  相似文献   

2.
A comparative study of the decay kinetics of photogenerated transients from small (60 kDalton) and native (124 kDalton) oat phytochrome in the red-absorbing form (Pr) in phosphate buffer containing 5 mM ethylenediamine tetraacetic acid, pH 7.8, (PB) and in PB containing 20% ethylene glycol, has been carried out in the temperature range 275–298 K. The analysis confirmed that at least two primary photoproducts, intermediates Ii700s and Ii7oo are formed from Pr. The kinetic parameters, as observed in PB at 695 nm and 275 K, are similar for the I700 intermediates of both small and native phytochrome. Namely, the lifetimes are about 21 μs (component percentages 38%) for the I Ii700s and about 200 μ.s (62%) for the Ii700S- Arrhenius preexponential factors (A) of about 1016 and 1015 s-1and activation energies of about 61 and 56 kJ/mol were measured for the absorbance decays of the I700S of small and native phytochrome, respectively. The kinetic data favour parallel paths for the formation of the Ii700s from Pr, and the activation parameters indicate that the primary photoreactions of the transformation from Pr to the far-red-absorbing form are restricted to the chromophore within the protein. Moreover, the relatively modest temperature dependence of the lifetimes of the Ii700S from small and native Pr supports the working hypothesis that the ground state reactions to the Iibl, intermediates–although somewhat influenced by the polypeptide fragment that is removed upon degradation of native to small Pr–are localized to the chromophore, as is most probably the case also for the primary photoreactions. The effect of the addition of 20% ethylene glycol on the pre-exponential factors of the time-dependent decay functions is discussed in similar terms of the early stages of the phototransformation.  相似文献   

3.
Abstract— Spores of Dryopteris paleacea and D. filix-mas are positively photoblastic with an optimum in the action spectrum around 665 nm. Light is perceived by phytochrome and the relationship between germination and mole fraction of the far-red-absorbing form of this pigment, Pfr, was investigated with saturating irradiations between 662 and 747 nm under low-fluence-rate conditions. These control irradiations establish a proportion of the total phytochrome, P,tot, as Pfr with Pfr/Ptot–φ at equilibrium. These φ -values were calculated according to data for native oat phytochrome (Kelly and Lagarias, 1985, Biochemistry 24, 6003) and the spectral characteristics of the interference filters. With this method a linear relationship could be found between φ and germination from 2 to 70% for D. paleacea and from 2 to 90% for D. filix-mas, if probit germination was plotted vs probit φ This correlation formed the basis of investigating the phytochrome photoconversion by dye-laser pulses of 380 ± 30 ns under high-fluence-rate conditions, and thus to test quantitatively the impact of the photoreversibility of intermediate reactions of the photoconversion and the red-absorbing form of phytochrome, Pfr on the final Pfr-level. Spore germination was initiated by a single-laser pulse in the range from 592 to 700 nm. The most effective wavelengths were 649 and 660 nm in both species, and at saturation maximal germination (ca. 50%) was obtained from 592 to 665 nm for D. paleacea or ca. 60% germination from 592 to 670 nm for D. filix-mas. Both saturation levels correspond to a ø-value between 0.40 and 0.45. This significantly diminished photoconversion is a consequence of the high-fluence-rate conditions during the laser pulse which establishes the photochromic system between Pr and a set of very early intermediates, Ii700, (= Pr? Ii700). This system can be described by the extinction coefficients of Pr and the intermediates Ii700, and by the quantum yields, 4,φ for the forward and reverse reactions as φ If φ is calculated, assuming a quantum yield of 1:1 for both reactions and with the extinction coefficients of Pr and Ii7(l() (= lumi-R) given by Eilfeld and Riidiger (1985, Z. Naturforsch. 40c , 109), significantly higher values are calculated for / as compared to φ found in the control experiments. These results can be explained either: (i) with a quantum yield ratio φpr-φ1700: φ1700φpr=1:1 and an assumed additional dark reaction leading from Ii700 or later intermediates back to Pr: or (ii) with a quantum yield ratio φpr φ 1700: φ1700 φpr=1:2. In this case all Ii700 have to relax to Pfr. In this case all Ii700 have to relax to Pfr.  相似文献   

4.
The primary quantum yield, Φ1700, for the photoconver-sion of the red-absorbing form of phytochrome, Pr, to the set of primary intermediates, Ii700, was redetermined by laser-induced optoacoustic spectroscopy at very low excitation laser fluences. The Ii700 value obtained is in the range of ΦPfr reported for the complete phototransformation Pr→ Pfr (J. M. Kelly and C. Lagarias, 1985, Biochemistry 24 , 4003–6010). An energy level of ca 150 kJ/ mol was found for the intermediates Ii700, i.e. ca 85% of the 0–0 level of Pr. Furthermore, a molecular expansion of 7 mL/mol (equivalent to 11 Å3/molecule) was determined for the Pr→ Ii700 transformation. It reflects the protein reorganization induced by the geometrical pho-toisomerization of the chromophore, which results in changes of bonding interactions, in particular between the chromophore and its protein surrounding.  相似文献   

5.
Abstract— Photoconversion of the red-light-absorbing form of phytochrome, Pr, to the far-red-light-absorbing form, Pfr, was investigated in vivo at 22°C with 600 or 800 ns laser pulses of high spectral purity and induction of spore germination in Dryopteris paleacea was used as indicator for the progress of photoconversion. This reaction is initiated by a saturating R-laser pulse of 648.5 nm, establishing an equilibrium of the photochromic system between Pr and the very early intermediates, Ii700 (Prφ Ii700)- The decay of Ii700 as well as the formation of Pfr was recorded by the application of a second pulse varied between 698 and 717.5 nm, which inhibits the formation of Plr being absorbed predominantly by Ii700or Pfr, respectively. The most effective inhibition for the second pulse is found up to 10 u.s after the first pulse and this is interpreted by photoreversion of Ii700 to Pr; thus reducing the formation of Pfr from Ii700. This early inhibition decreases between 10 μs to 100 ms after the R-laser pulse, as a result of the decay of Iibl to a bleached species I,;. This decay can be described by three first order kinetics with the rate constants k12= 16830 ± 2970 s-1, k12= 666 ± 218 s-1,k13= 9.8 ± 0.9 s-1. A second inhibition, due to the formation of Pfr, is found for dark intervals <100 ms and can be described by two first order kinetics with the rate constants k21= 2.9 ± 0.6 s-1 and k22= 0.17 s-l.  相似文献   

6.
The mechanism of I700 decay, representing an early event in the phytochrome Pr→ Pfr phototransformation, was reanalyzed in the microsecond range by conventional laser flash photolysis as well as by two-laser/two-color flash photolysis. Three kinetic models that might describe the I700 decay mechanism following Pr excitation were considered: a parallel, a sequential, and an equilibrium model. These models were used to mathematically simulate both the one- and two-laser flash experiments in an effort to select the model best describing the I700 decay. The sequential model could be excluded already on the basis of the one-laser flash photolysis results alone. Discussion of the two-laser/two-color flash rcsults in the context of the equilibrium and the parallel models is presented.  相似文献   

7.
The continuum emission of NO2 was investigated on the basis of time-resolved excitation and fluorescence spectra. The analysis of the observed spectra indicated the coexistence of inter- and intra-molecular relaxation processes of NO2. The continuum emission, the relative intensity of which at longer wavelengths increases more drastically as time goes on after excitation (2–6 μs), was concluded to originate predominantly from molecular collisions in a stepwise deactivation process. A fast component of the continuum emission, with a relative intensity with respect to the discrete band (IC/ID) independent of time and of NO2 pressure, appeared in collision-free conditions (<20 ns, 15 mTorr), and it was concluded to originate from radiationless transitions in isolated molecules.  相似文献   

8.
Under excitation at 365 nm, the cell fluorescence is mainly due to bound and free NAD(P)H, plus a small contribution from flavins. Resolution is first attempted in the simplest case. i.e. the increase spectrum (δIf) due to microinjection of glucose-6-phosphate (G6P) into EL2 ascites cells. Above 510 nm, δIF is identical to the spectrum of free NADH. Below 510 nm. the presence of a second component is suggested, i.e. the intensity of the free NADH spectrum is lower than the measured δIF level. The difference between δIf and the free NADH spectrum (maximum at 475 nm) yields a spectrum suggestive of bound NADH with maximum at 450 nm. Thus, with free and bound NADH, the entire δIF can be reconstructed, with some assumptions as to the relative quantum yields of the two components. This seems to leave no place for a flavin component. The questions raised by the lack of such a component are answered using a new microspectrofluorometer, which aiiows correlated monitoring of NAD(P)H and flavins with excitations at 365 and 436 nm, respectively. As detected by excitation at 436 nm, injections of G6P, malate, ADP, and treatments with azide, cyanide or partial anaerobiosis, all indeed show a redox change of flavins, in the sense of decreased emission. It is understandable, however, that such a change which is not very large even using 436 nm excitation should remain undetected when flavins are excited at 365 nm, i.e. using the tail of their excitation spectrum. In contrast to the increased δIF spectrum recorded in response to injected substrate, the initial spectrum (If) of the cell prior to a metabolic perturbation reveals a third component, even with 365 nm excitation. The position and reactivity of this component shows flavin-like properties. The structural resolution attainable makes it possible to obtain the evaluation of free vs. bound NAD(P)H and flavin fluorochromes in the mitochondrial and cytosolic compartments of the intact cell.  相似文献   

9.
The infrared multiphoton excitation of triethylsilane in the gas phase, with a pulsed CO2 laser at high intensities (I > 700 MW/cm2), produced an intense luminescence. The spectrum and time profile of this luminescence was studied as a function of pressure, and laser frequency. The radiative lifetime of this emission was 357 ± 10 ns, and the quenching rates by Cl2 and NO were determined from lifetime measurements. A reasonable mechanism for the interpretation of this luminescence involves the initial infrared multiphoton decomposition of triethylsilane, followed by the secondary infrared multiphoton excitation of the primary photofragment diethylsilyl radical, which subsequently undergoes relaxation to an excited electronic state. The addition of O2 resulted in a new chemiluminescence at shorter wavelengths, which corresponds to the SiO* chromophore group. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
Stabilization of phytochrome intermediates by low temperature   总被引:6,自引:0,他引:6  
Abstract— The photocon versions between the red-absorbing form (Pr) and the far-red absorbing form (Pfr) of phytochrome were examined at low temperatures. Partially purified preparations of the chromoprotein were examined in phosphate buffer and in 25 per cent buffer plus 75 per cent glycerol. Actinic irradiation of P, below – 150°C produces an intermediate with maximum absorbance near 695 nm, R695. Actinic irradiation of R695 converts it back to P. Above – 150°C R695 decays to a low extinction form of phytochrome, R, which in turn decays to Pfr upon further warming. Light absorption by Pfr below – 150°C results in the formation of an intermediate form of phytochrome with maximum absorbance near 660 nm, FR660. FR660 decays upon warming to a lower extinction form, FR'. which in turn decays to Pr on continued warming. No evidence was obtained to suggest that any of the observed intermediate states are involved in more than one direction of phytochrome photocon version.  相似文献   

11.
The fluorescence spectrum of iodine was investigated from 200 to 520 nm in the presence and absence of buffer gases following excitation of I2 with 193 nm photons. The pressure dependence of the fluorescence and tentative transition assignments for one new and several less well-known I2 emission bands are discussed.  相似文献   

12.
260–300 nm pulsed “photodissociation” of perfluoroalkyl iodide guests in rare gas and N2 lattices produces an unstructured structured 850–1050 nm emission. The excitation spectrum is continuous, and the emission maximum and lifetime vary from host to host. It is proposed that this emission occurs from a vibrationally relaxed, stationary “bound” electronic state in which the perfluoroalkyl radical and the I*(2P12) atom are held together by constrictive cage forces.  相似文献   

13.
The weak (φf < 103) fluorescence at around 430 nm of the S2 upper excited singlet state of metal-free phthalocyanine and metallophthalocyanines is presented. Polarization measurements indicate that the emission is short-lived (< 800 ps) contrary to the intense (φf > 0.3) normal emission at around 700 nm originating from S1 and having a lifetime in the 4.1 to 10.6 ns range, depending on the solvent. The short wavelength emitting S2 excited state has been populated by a two photon absorption process using the excitation light at 695 nm of a pulsed ruby laser. This process is shown not to involve the triplet state but the following stepwise two photon absorption process: .  相似文献   

14.
Abstract Fluorescence of phytochrome is found in the cells of etiolated monocotyledonous and dicotyledonous plants. The red light-absorbing form of phytochrome (Pr) fluoresces at 77 K with a yield 0.3±0.1 and maxima at 672–673 nm and 684–686 nm in the excitation and emission spectra, respectively. The emission is characterized by the sharp temperature dependence of its intensity, its high (~ 40%) polarization, and the violation of the mirror symmetry rule. Connection of the fluorescence with Pr photoreactions is followed in the interval 77–293 K. A P, photoproduct, lumi-R, is fluorescent with maxima at 696 nm and 705 nm in the excitation and emission spectra; the far-red light absorbing form of phytochrome (Pfr) is practically nonfluorescent. Three isochromic emitting Pr species are present differing in their photochemical properties: Pr1 and Pr2 which phototransform irreversibly and reversibly at T 170 K into lumi-R, and lumi-R2, respectively, and Pr3 which undergoes photoconversion only at T > 240 K. The activation energies of Pr2 and Pr3 photoreactions are evaluated to be 2.9–3.3 kJ/mol and 26 kJ/mol. Complex dynamics of changes of Pr fluorescence and of the extent of its decrease in the photoconversion Pr? Pfr in germinating pea and bean seeds suggests the existence of two Pr pools one of which is incapable of Pr? Pfr phototransformation. Thus, the developed fluorescent method of phytochrome assay and investigation in the cell revealing multiplicity of phytochrome states in vivo proves to be very sensitive (about 1 ng) and informative.  相似文献   

15.
The mechanism of a photochemical reaction involves the formation and dissociation of various short-lived species on ultrafast timescales and therefore its characterization requires detailed structural information on the transient species. By making use of a structurally sensitive X-ray probe, time-resolved X-ray liquidography (TRXL) can directly elucidate the structures of reacting molecules in the solution phase and thus determine the comprehensive reaction mechanism with high accuracy. In this work, by performing TRXL measurements at two different wavelengths (400 and 267 nm), the reaction mechanism of I3 photolysis, which changes subtly depending on the excitation wavelength, is elucidated. Upon 400 nm photoexcitation, the I3 ion dissociates into I2 and I. By contrast, upon 267 nm photoexcitation, the I3 ion undergoes both two-body dissociation (I2+I) and three-body dissociation (I+2I) with 7:3 molar ratio. At both excitation wavelengths, all the transient species ultimately disappear in 80 ns by recombining to form the I3 ion nongeminately. In addition to the reaction dynamics of solute species, the results reveal the transient structure of the solute/solvent cage and the changes in solvent density and temperature as a function of time.  相似文献   

16.
Phase memory decays were obtained from the transient signals sampled within 50 ns of laser excitation by time resolved electron spin echo (ese) spectroscopy in normal protonated, deuterated, deuterated 15N photosynthetic algae and broken chloroplasts. Previously, it has been shown that application of time resolved ese to study these systems, in particular, gives rise to two kinds of signals (standard and special ese). The standard ese signal at g = 2.0023 and the special ese signal exhibit similar electron spin echo envelope modulation (eseem). The modulation frequency and pattern can be identified with that obtained from stable oxidized P700 in the same system. The two lower field resonances of the standard ese signal do not show eseem. The results support the proposed mechanism for formation of special ese and the notion that the standard ese is due to at least two radicals. It is also demonstrated that we can observe eseem of P+700 under ambient temperature conditions.  相似文献   

17.
Here, we report the preparation of nano silver (Ag) and nano Ag-erbium (Ag–Er) co-embedded potassium–zinc-silicate based monolithic glass nanocomposites by a controlled heat-treatment process of precursor glasses. The nanocomposites were characterized by differential scanning calorimeter, dilatometer, UV–Visible absorption spectrophotometer, X-ray diffractometer and transmission electron microscope and spectroflurimeter. A strong surface plasmon resonance (SPR) band is observed around 430 nm in all the heat-treated glass nanocomposite samples due to the formation of Ag0 nanoparticles (NP). The Ag-glass nanocomposite samples display nearly 2-fold enhanced photoluminescence (PL) at 470 nm upon excitation at 290 nm until the size of the NP increases to the value equals to the mean free path of conduction electrons inside the particles. On contrary to this, the photoluminescence spectra of Er3+ ions exhibit a gradual decrease of NIR emission at 1540 nm due to 4I13/2 → 4I15/2 transition under excitation at 523 nm in the heat-treated glass nanocomposites which happened due to excitation energy transfer of Er3+ ions to the Ag NP, acting as ‘plasmonics diluents’ for Er3+ ions. These nanocomposites have huge potential for various nanophotonic applications.  相似文献   

18.
Monomers, 1-pyrenylmethyl methacrylate (PyMMA), 1-pyrenylbutyl methacrylate (PyBMA), 4-(1-pyrenyl)methoxymethyl styrene (PyMMS) and allyl-(1-pyrenylmehtyl) ether (PyMAE), with pyrene as chromophore, were prepared. Their spectral properties (absorption, emission and emission decay) in solution, and doped or bonded in polymer matrices and complex polymer systems as interpenetrating polymer networks (IPN), were investigated. Spectral properties of pyrene-containing monomers doped in polystyrene (PS), polymethylmethacrylate (PMMA), polyvinylchloride (PVC), polyethylene (PE) and grafted on PE as well as copolymerized in buthylmethacrylate-co-styrene copolymer (BMA-co-S) have been compared. Absorption and emission spectra of pyrene type probes in solution and in IPN matrices exhibit typical absorption of the pyrene moiety. For IPN with grafted probes on PE, the absorption is slightly shifted to red wavelength. For monomers, PyMMA, PyBMA and PyMAE grafted to PE, the shape of the emission spectrum depends on the wavelength of excitation. The ratio of intensity of the vibrational band, I1/I3, (I1 peak at 377 nm and I3 peak at 388 nm) has been a quite useful indicator of polarity of IPN. The relative quantum yields of fluorescence in IPN matrices are lower in comparison to polymer matrices of PE, PS, PMMA for all probes under study. The fluorescence life-times for bound and free probes have been in the range 100–200 ns, which is substiantialy shorter than for the parent pyrene chromophore under the same or similar condition. Grafted probes on PE alone, or as a part of IPN, exhibit substantially shorter life-time around 10 ns and decay is rather complex.  相似文献   

19.
Intense 2.7 μm emission derived from modified Er3+ doped germanate glass was reported. Raman spectrum analysis was carried out to grasp glass structure. Based on the absorption spectrum, the Judd–Ofelt parameters and radiative properties were calculated originated from Judd–Ofelt theory. 2.7 μm emission characteristics, stark splitting features and energy transfer processes upon excitation of a conventional 808 nm or 980 nm laser diode were carefully investigated. The prepared glass possesses high spontaneous transition probability (34.28 s−1), large calculated emission cross section (13 × 10−21 cm2) and gain coefficient (5.4 cm−1) for the 4I11/2 → 4I13/2 transition. These results indicate that Er3+ doped germanate glass has potential applications in mid-infrared lasers and amplifiers.  相似文献   

20.
When a beam of In is cross fired at a beam of I2 and the intersection is irradiated by various cw laser sources, InI emission is observed. The origin of this emission is shown to be laser-induced fluorescence (LIF) from the ground state indium monoiodide product of the reaction In + I2 → InI + I, rather than laser-induced chemiluminescence (LIC) through the excitation of the I2 reagent in the reaction In + I23 → InI* + I. An upper bound on the cross section for the later process is estimated to be ?2.5 × 10?16 cm2. The LIF excitation spectrum reveals a strong inversion in the InI vibrational population distribution, with the fraction of the total excess energy of reaction in vibration exceeding 0.5. Preliminary results for the Tl + I2 reaction system show the same LIF m  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号