首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The experimental kinetics for γ-lactone formation shows more complexity than that for acids. Nonetheless, it can be concluded to the existence of a constant rate of formation from the beginning of the experiments with polyethylene melts. There is an additional term contributing to γ-lactone formation in the initial stages that is cubic in processing time. In the advanced stages of processing, in the high temperature range (170-200 °C), the concentration of γ-lactones increases linearly with the processing time.There are many mechanisms susceptible to give γ-lactones on polyethylene melt processing. Some of them are based on decomposition of intermediates formed directly on chain propagation. This is so for the α,γ-keto-hydroperoxides in 4-position to hydroxyl groups. Since decomposition of these intermediates is very fast, the reaction might account for a constant rate of γ-lactone formation from the beginning of polyethylene processing. Decomposition of the α,δ-keto-hydroperoxides formed on intramolecular reactions on chain propagation is not so fast as that of the α,γ-keto-hydroperoxides. Nonetheless, it might account for part of the delayed formation of γ-lactones. The same is valid for the mechanisms based on peroxidation of aldehydes and γ-hydroxy trans-vinylene groups that involve intermediates that are formed on polyethylene peroxidation. They might be important for explaining the cubic term as well as γ-lactone formation in the advanced stages of polyethylene processing.  相似文献   

2.
Aldehydes and acids can be formed in numerous reactions in oxidizing polyethylene melts. Significant amounts of aldehydes result from β-scission of alkoxy radicals that are formed on bimolecular hydroperoxide decomposition. There are also large amounts of aldehydes expected from acid-catalyzed decomposition of allylic hydroperoxides as soon as enough acids have accumulated for efficient catalysis. There are difficulties in explaining the formation of aldehydes at a constant rate in sufficient amount for explaining the experimental data. There are much less difficulties with the constant rate of carboxylic acid formation. The α,γ-keto-hydroperoxides that are formed on chain propagation might account for the bulk of the acids formed at a constant rate.The foremost problems with the acids pertain to their formation at increasing rates in the initial as well as in the advanced stages. Formation and decomposition of α,β-di-hydroperoxides and α,γ-di-hydroperoxides is a possibility in this respect. Similarly, α,β-keto-hydroperoxides might be formed on peroxidation in the α-position to ketone groups in the advanced stages. There are considerable difficulties in elucidating the exact role of the aldehydes that are usually seen as the main precursors of the acids. Although there are many possibilities for transformation of aldehydes into acids, the free radical mechanisms envisaged usually have considerable disadvantages. These disadvantages result essentially from fast decarbonylation of acyl radicals and even faster decarboxylation of acyl-oxy radicals. Direct transformation of peracids into acids on reaction with double bonds is always a possibility. Moreover, in the low temperature range (150-160 °C) where hydroperoxides are accumulating, direct reaction of aldehydes with primary and/or secondary hydroperoxides will also yield acids.  相似文献   

3.
There are many reactions susceptible to yield aldehydes and acids in polyethylene melts. It is β-scission of the alkoxy radicals formed on bimolecular hydroperoxide decomposition that is expected to be one of the main sources of the aldehydes that are formed at increasing rates in the early stages of polyethylene processing. Acid-catalyzed decomposition of allylic hydroperoxides is another source of substantial amounts of aldehydes. Formation and decomposition of α,γ- and α,β-di-hydroperoxides should yield acids. The activation energy estimated for these different processes is very large (about 57 kcal/mol) so that their contribution could be significant in the high temperature range only. This is different for the reaction of aldehydes with hydroperoxides to yield peroxy-hemiacetals. These intermediates can be expected mainly in the low temperature range where hydroperoxides are accumulating. Decomposition of the peroxy-hemiacetals gives acids as one of the main products. Free-radical induced oxidation of aldehydes is likely to yield peracids as far as oxygen addition is competitive with decarbonylation. The main problem is the transformation of the peracids into acids. The reaction with double bonds is expected to yield significantly more acids than thermal decomposition of peracids. If the last occurs, it will be followed mainly by decarboxylation. The overall activation energy for both processes of acid formation is negative (−18 to −20 kcal/mol). It is some combination of the various mechanisms examined that might account for the experimental activation energy for acid formation in the initial stages that is close to 18 kcal/mol.  相似文献   

4.
There are only few mechanisms susceptible to explain γ-lactone formation at a constant rate. The formal kinetics based on these mechanisms proves to be a useful tool in the attempt to estimate the likeliness and possible relative amount of their contribution. The α,γ-keto-hydroperoxides formed in 4-position to hydroxyl groups are decomposed very rapidly at the temperatures of the experiments. The decomposition yields a carboxylic acid group in 4-position to the alcohol group and is first choice for explaining γ-lactone formation at a constant rate. However, the activation energy deduced from the formal kinetics developed for this mechanism is rather small with about 3.6 kcal/mol and hardly in agreement with the experimental value of 29.8 kcal/mol. This leads to the re-examination of the experimental data. Separate fitting of the data for the low temperature range yields the value of 4.1 kcal/mol. This value is sufficiently close to the value deduced from the formal kinetics to be compatible with it. The formal kinetics indicates also that on passing from air to pure oxygen the rate should increase by a factor of about 1.7. This is sufficiently close to the experimental value of about 2 for agreement. It is concluded that the mechanism examined can account for the bulk of the γ-lactone formed at a constant rate.The calculations for 1-peroxy-2,5-di-hydroperoxides and 1,4-keto-hydroperoxides do not yield conclusions that are as straightforward as those for the α,γ-keto-hydroperoxides in 4-position to hydroxyl groups. Although the estimated activation energies are roughly compatible with the experimental value for the low temperature range, the increase with the oxygen concentration is significantly larger than that observed experimentally. Hence, the contribution of these intermediates to the constant rate of γ-lactone formation can only be minor.  相似文献   

5.
Most products formed on polyethylene oxidation result from hydroperoxide decomposition. The product yields can be calculated for various mechanisms of hydroperoxide decomposition. This work concerns the reaction of a hydroperoxide with an alcohol group thought to be dominant in the advanced stages of polyethylene processing in the high temperature range (170-200 °C). Besides hydrogen abstraction by caged alkoxy radicals already envisaged previously, the possibility of β-scission is taken into account. This additional reaction introduces significant complexity into the reaction schemes. This is especially so because additional caged radical pairs must be included into the schemes and the calculations. It becomes possible to calculate the yields of aldehyde and vinyl groups that do not result from hydroperoxide decomposition in the absence of β-scission. The yields of the main oxidation products such as alcohols and ketones are not much affected by taking into account β-scission. The yield of aldehydes is important in the whole temperature range and increases considerably if the temperature is raised from 170 to 200 °C. It becomes more important than the ketone yield. The vinyl groups are formed in amounts corresponding roughly to 10-15% of the trans-vinylene groups in the temperature range of 170-200 °C.  相似文献   

6.
The product yields from the reaction between two hydroperoxide groups have been re-calculated. This is a consequence of the fact that β-scission of secondary alkoxy radicals cannot be neglected in the high temperature range of the polyethylene processing experiments (170-200 °C). It must be taken into account in addition to disproportionation/combination and hydrogen abstraction by alkoxy radicals. The increased complexity caused by the additional reaction results mainly from the larger number of caged radical pairs involved in the reactions and also in the calculations. Among other products it becomes possible to calculate the yields of aldehyde and vinyl groups that would not result from hydroperoxide decomposition in the absence of β-scission. The yields of the main oxidation products such as alcohols, ketones and trans-vinylene groups are reduced to some extent in comparison with the values calculated if β-scission is neglected. The vinyl group yield corresponds to slightly more than 10% of the yield of trans-vinylene groups in the temperature range of the experiments. The aldehyde yield is significantly larger than the vinyl group yield and is important in the whole temperature range examined. Main-chain scissions are important at the temperatures of the experiments. They become more important than the sum of the different combination reactions from a temperature of 200 °C on.  相似文献   

7.
Polybutadiene films were aged under air or high oxygen pressure (3.1 MPa). In both cases, the amount of epoxide formed was titrated. The results show that the epoxide formation rate is a decreasing function of oxygen concentration that validates the mechanism proposed by Mayo. According to this mechanism, epoxides are generated from the decomposition of β-peroxy alkyl radicals resulting from the addition of peroxy radicals on double bonds.  相似文献   

8.
The thermolysis of 2,3-dimethyl-2,3-diphenylbutane (bicumene) at temperatures ranging from 220 to 310 °C is used to initiate the radical-mediated graft addition of vinyltriethoxysilane (VTEOS) to polyethylene. Model hydrocarbon studies indicate that the cumyl radicals generated by the slow decomposition of bicumene are capable of direct hydrogen atom abstraction at levels that are sufficient to sustain a graft propagation sequence of high kinetic chain length. The interaction of O2 with cumyl radicals can lead to oxidation of the initiator and the hydrocarbon substrate, thereby enhancing the macroradical population and improving grafting rates and yields. In addition to providing remarkable kinetic chain lengths for VTEOS additions, high-temperature bicumene-based processes can induce HDPE and LDPE fragmentation such that the effects of radical combination on melt viscosity are counteracted. As a result, alkoxysilane-modified polymers that moisture-cure efficiently can be produced without incurring the undesirable increases in molecular weight that accompany conventional grafting processes.  相似文献   

9.
Numerous reactions can yield trans-vinylene groups on polyethylene oxidation. The first problem on data interpretation consists in the separation of the experimental data into components corresponding to well-defined mechanisms. This is achieved by fitting the experimental data into an equation comprising a linear and a parabolic term. The linear term corresponds to trans-vinylene formation at a constant rate from the beginning of the experiments. It can be attributed to trans-vinylene formation on direct decomposition of polyethylene peroxy radicals. The second term accounts for trans-vinylene group formation on cage reactions of various free radicals resulting from hydroperoxide decomposition.The first mechanism can be interpreted by formal homogeneous kinetics. Formation of trans-vinylene groups according to the second mechanism can be accounted for by the heterogeneous kinetics. It proceeds in parallel with the formation of alcohols and ketones. However, reaction of the double bonds with various reactive species in the oxidizing polymer melt does not only lead to a limiting value of the concentration in the advanced stages of polyethylene processing, but also affects the accuracy of the calculations already in the early stages.  相似文献   

10.
The rate of acid formation at high temperature is constantly increasing but temperature independent. Two main mechanisms can account for this behavior in the advanced stages of polyethylene processing. The first mechanism is based on free radical induced oxidation of aldehyde pairs that are formed on acid-catalyzed decomposition of allylic hydroperoxides. The last will be formed essentially on mechanical stress-induced oxygen addition to trans-vinylene groups. Peroxidation of one of the aldehydes might yield an acyl-peroxy radical that is likely to abstract the labile hydrogen atom from the second aldehyde. The acyl radical formed in the reaction will abstract a hydroxyl group from the peracid formed in the same reaction. This yields an acid and an acyl-oxy radical that will give a primary alkyl radical on decarboxylation. The second mechanism involves oxidation of ketones and alcohols that accumulate in the oxidizing melt. Acid-catalyzed decomposition of the α-keto-hydroperoxides yields simultaneously an acid and an aldehyde. Formal kinetics based on each mechanism shows that they do not involve significant activation energy, as it is required by the experimental data. The dependency on the oxygen concentration deduced from the formal kinetics for the oxidation of aldehyde pairs is in agreement with the experiments.  相似文献   

11.
Degradation of polypropylene (PP) during melt processing was studied using a novel profluorescence technique. The profluorescent nitroxide probe, 1,1,3,3-tetramethyldibenzo[e,g]isoindolin-2-yloxyl (TMDBIO) was added to PP during melt processing to act as a sensor for carbon-centred radicals. Trapping of carbon-centred radicals, formed during degradation of PP, led to an increase in fluorescence emission from TMDBIO adducts. Through analysis of viscosity changes during processing cumulative chain scission degradation was estimated. At processing temperatures of 210 °C or below, fluorescence emission from TMDBIO adducts could be correlated with cumulative chain scissions when the number of chain scissions was small. At higher temperatures, a correlation was not observed most probably due to radical-trap instability rather than decomposition of the TMDBIO. Thus, TMDBIO may be used as a profluorescent sensor for degradation of PP during melt processing when the processing temperature is 210 °C or below.  相似文献   

12.
A method to measure the rate constant for the formation of symmetrical proton-bound dimers at ambient pressure was proposed. The sample is continuously delivered to the drift region of an ion mobility spectrometer where it reacts with a swarm of monomer ions injected by the shutter grid. Dimer ions are formed in the drift tube and a tail appears in the ion mobility spectrum. The rate constant is derived from the mobility spectra. The proposed approach was typically examined for methyl isobutyl ketone (MIBK), 2,4-dimethyl pyridine (DMP), and dimethyl methyl phosphonate (DMMP). The rate constants measured in this study were: 0.25 × 10−9, 0.86 × 10−10, and 0.47 × 10−10 cms−1 for MIBK, DMP and DMMP, respectively. The logarithm of the measured rate constants were found to be almost independent of reciprocal temperature within 303 to 343 K, indicating that no activation energy is involved in the formation of proton-bound dimers.  相似文献   

13.
Light stabilizers often display some degree of antioxidant activity against thermal degradation of polymers both in the solid state and the melt. Although this capacity to date has been documented in some instances such features have not been kinetically modelled for many light stabilizers. An understanding of the mechanisms of this activity is crucial in polymer materials due to the close link between prior thermal behaviour and post stabilisation.This paper considers the potential antioxidant activity of three representative UV stabilizers using a model system initiated (2,2′-azo-bisisobutyronitrile, AIBN) cumene oxidation. Kinetic measurements of oxidation rates in the presence of the stabilizers showed that the antioxidant activity as well as the mechanism and mode of inhibition was different for each of the stabilizers. Thus, whilst a triazine UV absorber (Cyasorb UV 1164) did not display any antioxidant activity, a hindered phenol (Cyasorb UV 2908) operated as a peroxy radical acceptor, and a hindered amine (Cyasorb 3529) retarded the model reaction without an induction period like many HAS stabilizers.The Cyasorb 2908 revealed weak antioxidant activity with a rate constant for the addition of cumylperoxy RO2 radicals to the functional group of the stabilizer k7 = 106.2±0.1 e−(3900±600)/RT, however, the inhibition index f (80 °C) is significantly higher than that of the commercial phenolic antioxidant Irganox 1076. Oxidation rate profiles in the presence of Cyasorb 3529 displayed a strong retarding activity by the stabilizer under conditions of the model experiments. The rates were found to depend linearly on the reciprocal square root of the concentration of the stabilizer over a sufficiently wide range thereby fitting the mechanism for the addition of cumylalkyl R radicals to the Cyasorb molecules. The rate constants for the addition of cumyl R radicals to the Cyasorb were determined to be k(333-353 K) = (2.0 ± 0.8) × 108 M−1 s−1. This value surpasses even the rate constants for other related HAS Chimassorb [Zeynalov EB, Allen NS. Effect of micron and nano-grade titanium dioxides on the efficiency of hindered piperidine stabilizers in a model oxidative reaction. Polym Degrad Stab 2006;91(4):931-9.] stabilizers and it follows that Cyasorb 3529 is a powerful retarder of thermal oxidation.  相似文献   

14.
Decomposition of 14C containing organic molecules into an inorganic compound has been investigated by γ-ray irradiation experiments under simulated repository conditions for radioactive waste. Lower molecular weight organic acids, alcohols, and aldehydes leached from metallic waste are reacted with OH radicals to give carbonic acid. A decomposition efficiency that expresses consumption of OH radicals by decomposition reaction of organic molecules is proposed. Decomposition efficiency increases with increasing concentration of organic molecules (1×10−6–1×10−3 mol dm−3) and is not dependent on dose rate (10–1000 Gy h−1). Observed dependence indicates that decomposition efficiency is determined by reaction probability of OH radicals with organic molecules.  相似文献   

15.
The preparation of the biodegradable aliphatic polyester poly(propylene succinate) (PPSu) using 1,3-propanediol and succinic acid is presented. Its synthesis was performed by two-stage melt polycondensation in a glass batch reactor. The polyester was characterized by gel permeation chromatography, 1H NMR spectroscopy and differential scanning calorimetry (DSC). It has a number average molecular weight 6880 g/mol, peak temperature of melting at 44 °C for heating rate 20 °C/min and glass transition temperature at −36 °C. After melt quenching it can be made completely amorphous due to its low crystallization rate. According to thermogravimetric measurements, PPSu shows a very high thermal stability as its major decomposition rate is at 404 °C (heating rate 10 °C/min). This is very high compared with aliphatic polyesters and can be compared to the decomposition temperature of aromatic polyesters. TG and Differential TG (DTG) thermograms revealed that PPSu degradation takes place in two stages, the first being at low temperatures that corresponds to a very small mass loss of about 7%, the second at elevated temperatures being the main degradation stage. Both stages are attributed to different decomposition mechanisms as is verified from activation energy determined with isoconversional methods of Ozawa, Flyn, Wall and Friedman. The first mechanism that takes place at low temperatures is auto-catalysis with activation energy E = 157 kJ/mol while the second mechanism is a first-order reaction with E = 221 kJ/mol, as calculated by the fitting of experimental measurements.  相似文献   

16.
The reactions of OH, H and eaq with 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and 4-chloro-2-methylphenoxyacetic acid (MCPA) were studied by pulse radiolysis. The site of OH-radicals addition to the aromatic ring of 2,4,5-T was found to be—C1: ∼18%, C2/C4/C5: total ∼28% and C3/C6: total ∼41%. The overall rate constants with OH-radicals were k(OH+2,4,5-T)=6.4 (±0.5)×109 mol dm−3 s−1 and k(OH+MCPA)=8.5 (±0.8)×109 mol dm−3 s−1. The radiation induced decomposition of the pesticides, chloride- and product formation (phenolic compounds, aliphatic acids) was studied by gamma radiolysis as a function of dose. A mechanism for acetate formation is discussed. The presence of oxygen during irradiation affected the decomposition rate only indiscernibly, however, chloride elimination, ring fragmentation (formation of aliphatic acids), TOC- and toxicity reduction were strongly enhanced. For complete removal of 500 μmol dm−3 herbicides a dose of ∼4 kGy was required. Using air saturation during irradiation a reduction of 37-40% of the TOC was observable at 5 kGy, detoxification (luminescence inhibition <20%) was achieved with 10 kGy.  相似文献   

17.
Rate constants for several intermediate steps in the OH‐initiated oxidation of isoprene were determined using laser‐photolysis/laser‐induced fluorescence of OH radicals at total pressures between 3 and 4 Torr at 295 K. The rate constant for decomposition of the hydroxyalkoxy radical was determined to be (3.0 ± 0.5) × 104 s?1 in this pressure range, which is in fair agreement with previous work. The presence of a prompt alkoxy decomposition pathway was also investigated and found to contribute less than 10% to the total hydroxyalkoxy radical decomposition. The rate constant for the reaction of the hydroxyperoxy radical with NO was determined to be (2.5 ± 0.5) × 10?11 cm3 molecule?1 s?1, which is moderately higher than previously reported. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 255–261, 2002  相似文献   

18.
As part of a study on the kinetic modelling of polyethylene oxidation under irradiation at low temperature and low dose rate, this first part deals with the kinetic regime in which thermal initiation, linked to hydroperoxide decomposition, is negligible compared to radiochemical initiation due to polymer radiolysis. The kinetic analysis is based on results published 30 years ago by Decker, Mayo and Richardson. A small modification of their mechanistic scheme, consisting in the introduction of a non-terminating bimolecular combination of PO2 radicals, leads to a more consistent set of radiochemical yield values. The most significant change is a decrease in the radiochemical yield of radicals Gi from 10 to 8. At 45 °C, termination of PO2 radicals is not very efficient: 35-40% of the PO2 + PO2 encounters are non-terminating, 75% of the termination events lead to peroxide bridges, the rest is a disproportionation according to the Russell mechanism.  相似文献   

19.
Rate coefficients for alkyl and alkoxy radical decomposition are important in combustion, biological, and atmospheric processes. In this paper, rate constant expressions for C1? C4 alkyl and alkoxy radicals decomposition via β‐scission are recommended based on the reverse, exothermic reaction, the addition of a hydrogen atom or an alkyl radical to an olefin or carbonyl species with the decomposition reaction calculated using microscopic reversibility. The rate expressions have been estimated based on a wide‐range study of available experimental data. Rate coefficients for hydrogen atom and alkyl radical addition to an olefin show a strong temperature curvature. In addition, it is found that there is a correlation between the activation energy for addition and (i) the type of atom undergoing addition and (ii) whether this radical adds to the internal or terminal carbon atom of the olefin. Rate coefficients for alkoxy radical decomposition show a strong correlation to the ionization potential of the alkyl radical leaving group and on the enthalpy of reaction. It is shown that the activation energy for alkyl radical addition to a carbonyl species can be estimated as a function of the alkyl radical ionization potential and enthalpy of reaction. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 250–275, 2006  相似文献   

20.
Permanganate salt of the complex cation trans-[Rh(γ-Pic)4Cl2]+ (γ-Pic = γ-picoline) was synthesized. The unusual decomposition reaction of the salt was studied at room temperature. This process has been found to conserve the γ-picoline ligands in cation untouched. A number of transformations in anionic part of salt have been observed. Metallic products of the salt thermal decomposition have been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号