首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coprinus comatus laccase isoenzyme induction and its effect on decolorization were investigated. The C/N ratio, together with aromatic compounds and copper, significantly influenced laccase isoenzyme profile and enzyme activity. This fungus produced six laccase isoenzymes in high-nitrogen low-carbon cultures but much less in low-nitrogen high-carbon (LNHC) cultures. The highest laccase level (3.25 IU/ml), equivalent to a 12.6-fold increase compared with unsupplemented controls (0.257 IU/ml), was recorded after 13 days in LNHC cultures supplemented with 2.0 mM 2-toluidine. Decolorization of twelve synthetic dyes belonging to anthraquinone, azo, and triphenylmethane dyes, by crude laccases with different proportion of isoenzymes produced under selected culture conditions, illustrated that the LacA is the key isoenzyme contributed to dyes decolorization especially in the presence of 1-hydroxybenzotriazol, which was further confirmed by dyes decolorization with purified LacA in the same condition. The crude laccase only was able to decolorize over 90 % of Reactive Brilliant Blue K-3R, Reactive Dark Blue KR, and Malachite Green, and higher decolorization for broader spectrum of synthetic dyes was obtained in presence of redox mediator, suggesting that C. comatus had high potential to decolorize various synthetic dyes as well as the recalcitrant azo dyes.  相似文献   

2.
The objective of this paper is to compare in silico data with wet lab physicochemical properties of crude laccase enzyme isolated from Rigidoporus sp. using wheat bran as solid substrate support towards dye decolorization. Molecular docking analysis of selected nine textile and non-textile dyes were performed using laccase from Rigidoporus lignosus as reference protein. Enzyme-based remediation methodology using crude enzyme enriched from solid state fermentation was applied to screen the effect of four influencing variables such as pH, temperature, dye concentration, and incubation time toward dye decolorization. The extracellular crude enzyme decolorized 69.8 % Acid Blue 113, 45.07 % Reactive Blue 19, 36.61 % Reactive Orange 122, 30.55 % Acid Red 88, 24.59 % Direct Blue 14, 18.48 % Reactive Black B, 16.49 % Reactive Blue RGB, and 11.66 % Acid Blue 9 at 100 mg/l dye concentration at their optimal pH at room temperature under static and dark conditions after 1 h of incubation without addition of any externally added mediators. Our wet lab studies approach, barring other factors, validate in silico for screening and ranking textile dyes based on their proximity to the T1 site. We are reporting for the first time a combinatorial approach involving in silico methods and wet lab-based crude laccase-mediated dye decolorization without any external mediators.  相似文献   

3.
Free laccase and fungal biomass from white-rot fungi were compared in the thermokinetics study of the laccase-catalyzed decolorization of an azo dye, i.e., Trypan Blue. The decolorization in both systems followed a first-order kinetics. The apparent first-order rate constant, k 1′, value increases with temperature. Apparent activation energy of decolorization was similar for both systems at ~22 kJ mol?1, while energy for laccase inactivation was 18 kJ mol?1. Although both systems were endothermic, fungal biomass showed higher enthalpy, entropy, and Gibbs free energy changes for the decolorization compared to free laccase. On the other hand, free laccase showed reaction spontaneity over a wider range of temperature (ΔT?=?40 K) as opposed to fungal biomass (ΔT?=?15 K). Comparison of entropy change (ΔS) values indicated metabolism of the dye by the biomass.  相似文献   

4.
Laccases catalyze the oxidation of various aromatic organic compounds concomitantly with molecular oxygen reduction to water. Triphenylmethane dyes are synthetic compounds widely used in diverse industries. Their removal from effluents is difficult, due to their high degree of structural complexity; hence, their high concentration in effluents cause a negative impact on the environment. In the present work, molecular docking was used to evaluate interactions between rGlLCC1 or rPOXA 1B enzymes with Crystal Violet (CV) or Malachite Green (MG) dyes. In addition, removal tests of the two dyes were performed. Van der Waals interactions were obtained for only the CV dye for both GlLCC1 and POXA 1B enzymes. Nevertheless, in the GlLCC1 model, two π-π interactions were observed. For the MG dye only, Van der Waals interactions were obtained. Moreover, amino acid composition interacting in each model with each dye was similar. It is important to highlight that by molecular docking, none of the estimated ligand configurations generated hydrogen bonds. Thus, explaining the difficulty to degrade CV and MG. Regarding CV, maximum decolorization percentage was 23.6 ± 1.0% using Ganoderma lucidum supernatant and 5.0 ± 0.5% with Pleurotus ostreatus supernatant. When using recombinant laccase enzyme concentrates, decolorization percentages were 9.9 ± 0.1 and 7.5 ± 1.0% for rGlLCC1 and rPOXA 1B, respectively. On the other hand, for the MG dye, maximum decolorization percentages were 52.1 ± 5.1 and 2.3 ± 0.2% using G. lucidum and P. ostreatus concentrates, respectively. Whereas with recombinant laccase enzymatic concentrates, values of 9.4 ± 0.8% were obtained, with rGlLCC1, and 2.1 ± 0.1% when using rPOXA 1B. These findings represent an important step in bioremediation processes improvement and efficiency of industry-generated products, using environmentally friendly alternatives.  相似文献   

5.
Laccases from fungal origin are typically unstable at high temperatures and alkaline conditions. This characteristic limits their practical applications. In this study, a new bacterial strain exhibiting laccase activity was isolated from raw fennel honey samples and identified as Bacillus subtilis X1. The CotA-laccase gene was cloned from strain X1 and efficiently expressed in Escherichia coli in a biologically active form. The purified recombinant laccase demonstrated an extensive pH range for catalyzing substrates and high stability toward alkaline pH and high temperatures. No loss of laccase activity was observed at pH 9.0 after 10 days of incubation, and approximately 21 % of the initial activity was detected after 10 h at 80 °C. Two anthraquinonic dyes (reactive blue 4 and reactive yellow brown) and two azo dyes (reactive red 11 and reactive brilliant orange) could be partially decolorized by purified laccase in the absence of a mediator. The decolorization process was efficiently promoted when methylsyringate was present, with more than 90 % of color removal occurring in 3 h at pH 7.0 or 9.0. These unusual properties indicated a high potential of the novel CotA-laccase for industrial applications.  相似文献   

6.
In this paper, ceramic plates were used as a support of TiO2 nanoparticles for photocatalytic decolorization of a mixture of three dyes. The three textile dyes (C.I. Basic Red 46, C.I. Basic Blue 3 and Malachite Green) were quantified simultaneously during the photocatalytic degradation process. The partial least squares modeling was successfully applied for the multivariate calibration of the spectrophotometric data. Also, the central composite design has been applied to the optimization of photocatalytic decolorization of the dye solution containing three dyes using an immobilized UV/TiO2 process. The optimum initial concentration of three dyes, reaction time, and UV light intensity were found to be 5 mg/L, 240 min, and 47.2 W/m2, respectively. The chronic phytotoxicity of mixture of dyes was evaluated using aquatic species Spirodela polyrhiza (S. polyrhiza) prior to and after photocatalysis. The phytotoxicity results revealed that the photocatalysis process could effectively reduce the phytotoxicity of the dyes from their aqueous solutions.  相似文献   

7.
The laccase gene of Polyporus brumalis was genetically transformed to overexpress its laccase. The transformants exhibited increased laccase activity and effective decolorization of the dye Remazol Brilliant Blue R than the wild type. When the transformants were pretreated with wood chips from a red pine (softwood) and a tulip tree (hardwood) for 15 and 45 days, they showed higher lignin-degradation activity as well as higher wood-chip weight loss than the wild type. When the wood chips treated with the transformant were enzymatically saccharified, the highest sugar yields were found to be 32.5 % for the red pine wood and 29.5 % for the tulip tree wood, on the basis of the dried wood weights, which were 1.6-folds higher than those for the wild type. These results suggested that overexpression of the laccase gene from P. brumalis significantly contributed to the pretreatment of lignocellulose for increasing sugar yields.  相似文献   

8.
The toxicity potential and decolorization of three acid azo dyes (Acid Orange 6, Acid Orange 7, and Acid Orange 52) by methanogenic granular sludge from an anaerobic expanded granular sludge bed reactor was assayed. Complete bioreduction was found for all three azo dyes. Sulfanilic acid and 4-aminoresorcinol were detected from the decolorization of Acid Orange 6, sulfanilic acid and 1-amino-2-naphtol were detected from the reduction of Acid Orange 7, and sulfanilic acid and N,N-dimethyl-1,4-phenylenediamine (DMP) were found to be intermediates of Acid Orange 52 degradation. Sulfanilic acid and 1-amino-2-naphtol were persistent in the anaerobic conditions, whereas 4-aminoresorcinol was completely mineralized by anaerobic sludge and DMP was transformed into 1,4-phenylenediamine. Enrichment cultures obtained via consecutive passages on basal medium with only azo dye as a carbon and an energy source seemed to be morphologically heterogeneous. Baculiform and coccus cells were found when viewed under a light microscope. Cocci were joined in chains. Because anaerobic sludge contains sulfate-reducing bacteria and therefore may generate sulfide, azo dyes were tested for chemical decolorization by sulfide to compare rates of chemical and biologic reduction.  相似文献   

9.
Transformation of textile dyes by white-rot fungus Trametes versicolor   总被引:1,自引:0,他引:1  
We have investigated transformation of eight industrial dyes by a whiterot fungus, Trametes versicolor. The fungus was found to decolorize Reactive Golden Yellow R, Procion Red, Reactive Violet 5, Reactive Blue 28, and Ponceau Red 4R at an initial dye concentration of 80 ppm within 72 h of incubation, whereas it took 5 d to completely decolorize Reactive Black 5 (40 ppm). However, it did not significantly decolorize Reactive Red 152 and Novatic Blue BC S/D. During decolorization in liquid medium, laccase and manganese-independent peroxidase (MiP) activities were detected in culture filtrate of T. versicolor. Dye-decolorizing activity of the culture was found to be associated with H2O2-dependent activity of the culture filtrate. Furthermore, dye-decolorizing activity of the culture filtrate was not influenced by Mn2+ or veratryl alcohol, thus suggesting a role of extracellular MiP in decolorization of synthetic dyes by T. versicolor.  相似文献   

10.
Laccase from basidiomycete fungus Cyathus bulleri was evaluated for its ability to decolorize a number of reactive and acidic dyes in the presence of natural and synthetic mediators. The extent of decolorization was monitored at different mediator/dye concentrations and incubation time. Among the synthetic mediators, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was effective at low mediator/dye ratios and resulted in 80-95% decolorization at rates that varied from 226 +/- 4 nmol min(-1) mg(-1) for Reactive Orange 1 to 1,333 +/- 15 nmol min(-1) mg(-1) for Reactive Red 198. Other synthetic mediators like 1-hydroxybenzotriazole and violuric acid showed both concentration- and time-dependent increases in percent decolorization. Natural mediators like vanillin, on the other hand, were found to be less effective on all the dyes except Reactive Orange 1. Computed rates of decolorization were about twofold lower than that with ABTS. The laccase-ABTS system also led to nearly 80% decolorization for the simulated dye mixture. No clear correlation between laccase activity on the mediator and its ability to decolorize dyes was found, but pH had a significant effect: Optimum pH for decolorization coincided with the optimum pH for mediator oxidation. The treated samples were also evaluated for toxicity in model microbial systems. The laccase-mediator system appears promising for treatment of textile wastewaters.  相似文献   

11.
A white rot basidiomycete Polyporus brumalis has been reported to induce two laccase genes under degradation conditions of dibutylphthalate. When this fungus was grown in a minimal medium, one laccase enzyme was detected by the native polyacrylamide gel electrophoresis. A laccase was purified through ammonium sulfate precipitation and ion exchange chromatography, and the estimated molecular weight was 70 kDa. The optimum pH and temperature of the purified laccase was pH 4.0 and 20 °C, respectively. The K m value of the enzyme was 685.0 μM, and the V max was 0.147 ODmin−1 unit−1 for o-tolidine. Purified laccase showed effective decolorization of a dye, Remazol Brilliant Blue R (RBBR), without any laccase mediator. However, this effect was reduced by a laccase inhibitor, kojic acid, which confirmed that the laccase was directly involved in the decolorization of RBBR.  相似文献   

12.
Removal of azo dyes from effluent generated by textile industries is rather difficult. Azo dyes represent a major class of synthetic colorants that are mutagenic and carcinogenic. Pseudomonas aeruginosa grew well in the presence of Remazol Orange (RO) and was able to decolorize and degrade it. In the present study, the decolorization and degradation efficiency using single culture P. aeruginosa with RO and textile wastewaters is studied. The elucidation of decolorization pathway for P. aeruginosa is of special interest. The degradation pathway and the metabolic products formed during the degradation were also predicted with the help of high performance liquid chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy analysis. The data show the cleavage of the azo dye RO to form both methyl metanilic acid and 4-aminobenzoic acid after decolorization and finally to oxidation forms benzoic acid, alkenes, aldehydes, and alkynes. The organism was able to decolorize the dye RO and wastewater effectively to the maximum of 82.4% and 62%, respectively.  相似文献   

13.
Degradation of textile dyes mediated by plant peroxidases   总被引:3,自引:0,他引:3  
The peroxidase enzyme from the plants Ipomea palmata (1.003 IU/g of leaf) and Saccharum spontaneum (3.6 IU/g of leaf) can be used as an alternative to the commercial source of horseradish and soybean peroxidase enzyme for the decolorization of textile dyes, mainly azo dyes. Eight textiles dyes currently used by the industry and seven other dyes were selected for decolorization studies at 25–200 mg/L levels using these plant enzymes. The enzymes were purified prior to use by ammonium sulfate precipitation, and ion exchange and gel permeation chromatographic techniques. Peroxidase of S. spontaneum leaf (specific activity of 0.23 IU/mg) could completely degrade Supranol Green and Procion Green HE-4BD (100%) dyes within 1 h, whereas Direct Blue, Procion Brilliant Blue H-7G and Chrysoidine were degraded >70% in 1 h. Peroxidase of Ipomea (I. palmata leaf; specific activity of 0.827 U/mg) degraded 50 mg/L of the dyes Methyl Orange (26%), Crystal Violet (36%), and Supranol Green (68%) in 2–4 h and Brilliant Green 54%), Direct Blue (15%), and Chrysoidine (44%) at the 25 mg/L level in 1 to 2 h of treatment. The Saccharum peroxidase was immobilized on a hydrophobic matrix. Four textile dyes, Procion Navy Blue HER, Procion Brilliant Blue H-7G, Procion Green HE-4BD, and Supranol Green, at an initial concentration of 50 mg/L were completely degraded within 8 h by the enzyme immobilized on the modified polyethylene matrix. The immobilized enzyme was used in a batch reactor for the degradation of Procion Green HE-4BD and the reusability was studied for 15 cycles, and the halflife was found to be 60 h.  相似文献   

14.
Photocatalytic degradation of the reactive triazine dyes Reactive Yellow 84 (RY 84), Reactive Red 120 (RR 120), and Reactive Blue 160 (RB 160) on anatase phase N-doped TiO2 in the presence of natural sunlight has been carried out in this work. The effect of experimental parameters like initial pH and concentration of dye solution and dosage of the catalyst on photocatalytic degradation have also been investigated. Adsorption of dyes on N-doped TiO2 was studied prior to photocatalytic studies. The studies show that the adsorption of dyes on N-doped TiO2 was high at pH 3 and follows the Langmuir adsorption isotherm. The Langmuir monolayer adsorption capacity of dyes on N-doped TiO2 was 39.5, 86.0, and 96.3 mg g?1 for RY 84, RR 120, and RB 160, respectively. The photocatalytic degradation of the dyes follows pseudo first-order kinetics and the rate constant values are higher for N-doped TiO2 when compared with that of undoped TiO2. Moreover, the degradation of RY 84 on N-doped TiO2 in sunlight was faster than the commercial Aeroxide® P25. However, the P25 has shown higher photocatalytic activity for the other two dyes, RR 120 and RB 160. The COD of 50 mg l?1 Reactive Yellow-84, RR 120 and RB 160 was reduced by 65.1, 73.1, and 69.6 %, respectively, upon irradiation of sunlight for 3 h in the presence of N-doped TiO2. The photocatalyst shows low activity for the degradation of RY 84 dye, when its concentration was above 50 mg l?1, due to the strong absorption of photons in the wavelength range 200–400 nm by the dye solution. LC–MS analysis shows the presence of some triazine compounds and formimidamide derivatives in the dye solutions after 3 h solar light irradiation in the presence of N-doped TiO2.  相似文献   

15.
A novel ZnO nanowire/macroporous SiO2 composite was used as a support to immobilize chloroperoxidase (CPO) by in situ cross-linking method. An anionic bi-epoxy compound was synthesized and used as a long-chained anionic cross-linker, and it was adsorbed on the surface of ZnO nanowires through static interaction before reaction with CPO, creating a new approach to change the structure, property, and catalytic performance of the produced cross-linking enzyme aggregates (CLEAs) of CPO. The immobilized CPO showed high activity in the decolorization of three azo dyes. The effect of various conditions such as the loading amount of CPO, solution pH, temperature, and dye concentration was optimized on the decolorization. Under optimized conditions, the decolorization percentage of Acid Blue 113, Direct Black 38, and Acid Black 10 BX reached as high as 95.4, 92.3, and 89.1%, respectively. The immobilized CPO exhibited much better thermostability and resistance to pH inactivation than free CPO. The storage stability and reusability were greatly improved through the immobilization. It was found from the decolorization of Acid Blue 113 that 83.6% of initial activity retained after incubation at 4 °C for 60 days and that 80.9% of decolorization efficiency retained after 12 cycles of reuses.  相似文献   

16.
In the present study, three different types of hydrogels i.e., (poly (?acrylamide)/alginate (P (AAm)/Alg), poly (acrylamide-N-isopropylacrylamide) (P (AAm-NIPA)), and poly (acrylamide-N-isopropylacrylamide)/alginate (P (AAm-NIPA)/Alg)) were synthesized by acrylamide, alginate, and N-isopropylacrylamide for the entrapment of laccase. The hydrogel-entrapped and free laccase showed optimum temperature of 50 °C for the oxidation of ABTS, but the entrapped laccase showed high temperature, pH, and storage stability as compared to the free enzyme. The K m values of free laccase, (P (AAm)/Alg)-L, (P (AAm-NIPA))-L, and (P (AAm-NIPA)/Alg)-L were found to be 0.13, 0.28, 0.33, and 0.50 mM, respectively. The V max values of free laccase, (P (AAm)/Alg)-L, (P (AAm-NIPA))-L, and (P (AAm-NIPA)/Alg)-L were found to be 22.22?×?102, 5.55?×?102, 5.0?×?102, and 4.54?×?102 mM/min, respectively. The entrapped laccase hydrogels were used for the decolorization of Reactive Violet 1 dye, with 39 to 45 % decolorization efficiency till the 10th cycle.  相似文献   

17.
The factors affecting decolorization of anthraquinone dye represented by Reactive Blue 4 (RB4) and azo dye represented by Methyl Orange (MO) were studied in batch experiments under mesophilic (35 °C) and thermophilic (55 °C) anaerobic conditions. The results indicated differences in decolorization properties of the dyes with different chromophore structures. In abiotic conditions, MO could be decolorized by a physicochemical reaction when it was sterilized at 121 °C together with sludge cells or glucose. RB4 only showed absorption onto the cell mass. The presence of a redox mediator accelerated the decolorizing reaction when supplied together with glucose in the presence of sterilized sludge cells. In biotic conditions, the results indicated that the biological activity of microorganisms was an important factor in decolorization. The main factor involved in decolorization was the conversion of cosubstrate as electron donor, which reacted with dye as an electron acceptor in electron transfer. Redox mediators, anthraquinone-2-sulfonic acid, and anthraquinone could accelerate decolorization even if a small amount (0.2 mM) was applied. On the other hand, a high concentration of redox mediator (1.0 mM) had an inhibitory effect on decolorization especially under thermophilic conditions. In addition, the decolorization of dye was accelerated by increasing treatment temperature, as shown in biotic treatments. Based on these results, increasing the treatment temperature could be used to improve the decolorizing process of textile dye wastewater treatment, especially for recalcitrant dyes such as anthraquinone.  相似文献   

18.
Lignocellulolytic enzyme activities of selective fungi Daedalea flavida MTCC 145 (DF-2), Phlebia radiata MTCC 2791 (PR), and non-selective fungus Flavodon flavus MTCC 168 (FF) were studied for pretreatment of cotton stalks. Simultaneous productions of high LiP and laccase activities by DF-2 during early phase of growth were effective for lignin degradation 27.83 ± 1.25 % (w/w of lignin) in 20-day pretreatment. Production of high MnP activity without laccase in the early growth phase of PR was ineffective and delayed lignin degradation 24.93 ± 1.53 % in 25 days due to laccase production at later phase. With no LiP activity, low activities of MnP and laccase by FF yielded poor lignin degradation 15.09 ± 0.6 % in 20 days. Xylanase was predominant cellulolytic enzyme produced by DF-2, resulting hemicellulose as main carbon and energy source with 83 % of cellulose recovery after 40 days of pretreatment. The glucose yield improved more than two fold from 20-day DF-2 pretreated cotton stalks after enzymatic saccharification.  相似文献   

19.
Both Xylenol Orange and Methylthymol Blue are highly selective and sensitive reagents for zirconium and hafnium forming intensely red complexes in an acidic medium. The factors affecting the color formation have been studied. The properties of the complexes have been determined and compared. In general, zirconium forms a more stable complex with the two dyes than hafnium, and Xylenol Orange forms a stronger complex with either zirconium or hafnium than Methylthymol Blue. Hydrogen peroxide can completely mask the zirconium complexes of either dye but only slightly affects the hafnium complex of Xylenol Orange. Zirconium and hafnium can both be determined without separation using peroxide as a masking agent and sulfate as a demasking agent. A bleaching reaction was observed when small amounts of hafnium were added to the red zirconium complex of Methylthymol Blue in 2.4 N perchloric acid or a small amount of zirconium was added to the red hafnium complex of Methylthymol Blue solution at pH 2 to 3.  相似文献   

20.
Waste material (carbon slurry), from fuel oil-based generators, was used as adsorbent for the removal of two reactive dyes from synthetic textile wastewater. The study describes the results of batch experiments on removal of Vertigo Blue 49 and Orange DNA13 from synthetic textile wastewater onto activated carbon slurry. The utility of waste material in adsorbing reactive dyes from aqueous solutions has been studied as a function of contact time, temperature, pH, and initial dye concentrations by batch experiments. pH 7.0 was found suitable for maximum removal of Vertigo Blue 49 and Orange DNA13. Dye adsorption capacities of carbon slurry for the Vertigo Blue 49 and the Orange DNA13 were 11.57 and 4.54 mg g(-1) adsorbent, respectively. The adsorption isotherms for both dyes were better described by the Langmuir isotherm. Thermodynamic treatment of adsorption data showed an exothermic nature of adsorption with both dyes. The dye uptake process was found to follow second-order kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号