首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 994 毫秒
1.
Reaction of silver(I) halides with PPh3 in acetonitrile and then with pyridine-2-thione (pySH) chloroform (1:1:1 molar ratio) has yielded sulfur bridged dimers of general formula, [Ag2X2(μ-S-pySH)2(PPh3)2] (X = Cl, 1, Br, 2). Both these complexes have been characterized using analytical data, NMR spectroscopy and single crystal X-crystallography. The central Ag2S2 cores form parallelograms with unequal Ag–S bond distances (2.5832(8), 2.7208(11) Å) in 1 and (2.6306(4), 2.6950(7) Å) in 2, respectively. The Ag?Ag contacts of compounds 1 and 2 are 3.8425(8) and 3.8211(4) Å, respectively. The angles around Ag (in the range 87.19(2)–121.71(2)° in 1 and 87.81(2)–121.53(2)° in 2) reveal highly distorted tetrahedral geometry. There are inter dimer π–π stacking interactions between pyridyl rings (inter ring distances of 3.498 and 3.510 Å in complexes 1 and 2, respectively). The solution state 31P NMR spectroscopy has shown the existence of both monomers and dimers. The studies reveal relatively weaker intramolecular –NH?Cl hydrogen bonding in case of AgCl vis-à-vis that in CuCl which favored both a monomer and a dimer with AgCl, and only a monomer with CuCl.  相似文献   

2.
Synthesis and Structural Characterization of Adduct Cu2(phen)2   总被引:5,自引:0,他引:5  
《中国化学快报》2000,11(7):639-640
  相似文献   

3.
Single crystals of Cs4[(UO2)2(C2O4)(SO4)2(NCS)2] · 4H2O (I) and (NH4)4[(UO2)2(C2O4)(SO4)2(NCS)2] · 6H2O (II) have been synthesized and studied by X-ray diffraction. The crystals of both compounds are orthorhombic with the space group Pbam, Z = 2, and unit cell parameters a = 12.0177(3) ?, b = 18.6182(5) ?, c = 6.7573(10) ?, R = 0.0376 (I); a = 11.6539(9) ?, b = 18.3791(13) ?, c = 6.7216(5) ?, R = 0.0179 (II). The main structural units of crystals I and II are [(UO2)2(C2O4)(SO4)2(NCS)2]4− chains belonging to the crystal-chemical group A2K02B22M21 (A = UO22+, K02 = C2O42−, B2 = SO42−, M1 = NCS) of the uranyl complexes. The uranium-containing chains are joined into a three-dimensional framework due to a system of electrostatic interactions with the cesium or ammonium ions in the structure of I. In the structure of II, this framework is additionally stabilized by hydrogen bonds involving the outer-sphere water molecules and ammonium ions. Original Russian Text ? I.V. Medrish, A.V. Virovets, E.V. Peresypkina, L.B. Serezhkina, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 7, pp. 1115–1120.  相似文献   

4.
A reaction of Cp′Mo(CO)3Cl(Cp′ = MeC5H4) with (PPh3)2Pt(C2Ph2) gave the heterometallic cluster Cp′Mo(μ-CO)2(C2Ph2)Pt2(PPh3)2(CO)Cl (I) as the sole product. According to X-ray diffraction data, complex I contains single Pt-Mo bonds (2.7962(5) and 2.7699(5) ?) but no Pt-Pt bond (Pt…Pt 2.9746(3) ?). The coordinated diphenylacetylene molecule forms two Pt-C σ-bonds (2.054(6) and 2.083(5) ?) and a π-bond to the Mo atom (Mo-C 2.265(6) and 2.272(5) ?; C≡C 1.387(8) ?). Original Russian Text ? A.A. Pasynskii, I.V. Skabitskii, Yu.V. Torubaev, S.S. Shapovalo, 2009, published in Koordinatsionnaya Khimiya, 2009, Vol. 35, No. 6, pp. 410–413.  相似文献   

5.
Two modifications of the new uranyl oxalate hydroxide dihydrate [UO2)2(C2O4)(OH)2(H2O)2] (1 and 2) and one form of the new uranyl oxalate hydroxide trihydrate [(UO2)2(C2O4)(OH)2(H2O)2]·H2O (3) were synthesized by hydrothermal methods and their structures determined from single-crystal X-ray diffraction data. The crystal structures were refined by full-matrix least-squares methods to agreement indices R(wR)=0.0372(0.0842) and 0.0267(0.0671) calculated for 1096 and 1167 unique observed reflections (I>2σ(I)), for α (1) and β (2) forms, respectively and to R(wR)=0.0301(0.0737) calculated for 2471 unique observed reflections (I>2σ(I)), for 3. The α-form of the dihydrate is triclinic, space group , Z=1, a=6.097(2), b=5.548(2), , α=89.353(5), β=94.387(5), γ=97.646(5)°, , β-form is monoclinic, space group C2/c, Z=4, a=12.180(3), b=8.223(2), , β=95.817(4), . The trihydrate is monoclinic, space group P21/c, Z=4, a=5.5095(12), b=15.195(3), , β=93.927(3), . In the three structures, the coordination of uranium atom is a pentagonal bipyramid composed of dioxo UO22+ cation perpendicular to five equatorial oxygen atoms belonging to one bidentate oxalate ion, one water molecule and two hydroxyl ions in trans configuration in 2 and in cis configuration in 1 and 3. The UO7 polyhedra are linked through hydroxyl oxygen atoms to form different structural building units, dimers [U2O10] obtained by edge-sharing in 1, chains [UO6] and tetramers [U4O26] built by corner-sharing in 2 and 3, respectively. These units are further connected by oxalate entities that act as bis-bidentate to form one-dimensional chains in 1 and bi-dimensional network in 2 and 3. These chains or layers are connected in frameworks by hydrogen-bond arrays.  相似文献   

6.
The sandwich-type [Na(UO2)2(H2O)4(BiW9O33)2]13− uranium (VI) has been synthesized by reacting the trivacant species of B-α-[BiW9O33]9− with and investigated by IR and UV–Vis spectroscopy, and elemental analysis. The X-ray single crystal analysis was carried out on Na13[Na(UO2)2(H2O)4(BiW9O33)2] · 33H2O (I) which crystallizes in the orthorhombic system, space group Pna21 with a = 33.8454(19) ?, b = 21.1484(12) ?, c = 13.2403(7) ?, α = 90°, β = 90°, γ = 90°, and Z = 4. The polyanion consists of two lacunary B-α-[BiW9O33]9− groups which sandwich two uranyl cations and one sodium cation. The uranium atoms adopt distorted pentagonal–bipyramidal coordination, achieved by two equatorial bonds to each BiW9O33 unit and one external water ligand. The coordination of each uranium atom is evident by the shift of νas(W–Ob–W) and νas(Bi–O) stretching vibrational bonds. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
New complexes of transition metals with organotellurium halide ligands are reported. Iodination of [CpMn(CO)2]2(μ-Ph2Te2) leads to the Te-Te bond cleavage and formation of CpMn(CO)2(PhTeI). Oxidative addition of PhTeBr3 to Fe(CO)5 gives the monomeric complex (CO)3FeBr2(PhTeBr) which is isostructural with the recently reported (CO)3FeI2(PhTeI). Insertion of phenyltellurenyl iodide (PhTeI) into the Fe-I bond of CpFe(CO)2I forms CpFe(CO)2(TeI2Ph). Molecular structures of the reported complexes were determined by single-crystal X-ray diffraction analysis (XRD). A considerable shortening of metal-tellurium distances is observed.  相似文献   

8.
Reactions of Ru3(CO)12 with PhTeBr3 and of Re(CO)5Cl with PhTeI in benzene give the stable complexes (CO)2RuBr2(PhTeBr)2 (I) and (CO)3Re(PhTeI)33-I) (II) containing two and three ligands PhTeX (X = Br or I), respectively. The bonds between these ligands and the central metal atom are fairly shortened (on average, Ru-Te, 2.608 ?; Re-Te, 2.7554(12)-2.7634(13) ?). The Te-X bonds in the ligands PhTeBr (2.5163(5) ?) and PhTeI (2.7893(15) ?) are not lengthened appreciably. In complex II, the iodide anion is not coordinated by rhenium, yet being attached through weak secondary bonds to three Te atoms of the three ligands PhTeI.  相似文献   

9.
Two novel polynuclear complexes with methanoate anions and 3-hydroxypyridine ligands [Cu(μ-HCO2)2(3-pyOH)]n (1) and [Cu2(μ-HCO2)2(μ-3-pyOH)2(3-pyOH)2(HCO2)2]n (2), respectively, were synthesized and characterized. The central copper atom in 1 is surrounded by four methanoates and a 3-pyOH molecule, forming a square-pyramidal CuO3NO chromophore. All the methanoates are bidentate and serve as bridges between the adjacent copper ions via syn-anti and anti–anti coordination. The basal square coordination axes are formed by O(syn), N(3-pyOH) (1.974(2), 2.016(2) Å) and O(anti), O(anti) (1.945(2), 1.960(2) Å), while the third O(anti) (2.247(2) Å) is on the top of the pyramid. A ferromagnetic transition with an exchange constant 2J/kB = 9.2 cm−1 is found for 1 below 20 K. This interaction probably takes place through two syn-anti methanoates extended in a chain through the 2D structure. On the other hand, two monoatomic Cu–O–Cu intra-dinuclear asymmetric (1.986(2), 2.415(2) Å) bridges of two methanoates in [Cu2(HCO2)4(3-pyOH)4] (2) are present. An elongated distorted octahedral coordination sphere around each copper(II) atom is completed by an additional monodentate terminal methanoate (1.975(2) Å), two N-coordinated 3-pyOH (2.005(2), 2.002(2) Å) and the third weakly O-coordinated 3-pyOH (2.732(2) Å). Although a shorter Cu?Cu distance is noticed in 2 than in 1 (4.690(1) Å 1, 3.442(1) Å 2), much weaker ferromagnetism is found in 2.  相似文献   

10.
Methods for the synthesis of trans-diammino complexes [RuNO(NH3)2(NO2)2(OH)] (I) and [RuNO(NH3)2(H2O)(NO3)2](NO3)·H2O (II) are suggested. The compounds were studied by IR spectroscopy and X-ray phase and X-ray structural analyses. Crystal data: space group P-1; a = 6.2328(2) ?, b = 11.0488(3) ?, c = 11.0981(4) ?, α = 71.942(1)°, β = 83.291(1)°, γ = 86.877(1)° (I); space group P21; a = 6.6290(2) ?, b = 13.4389(5) ?, c = 7.0180(2) ?, β 114.281(1)° (II). Complex II readily lost some part of crystal water on storage in open air. Original Russian Text Copyright ? 2009 by M. A. Il’in, E. V. Kabin, V. A. Emel’yanov, I. A. Baidina, and V. A. Vorob’yov __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 50, No. 2, pp. 341–348, March–April, 2009.  相似文献   

11.
Relativistic scalar and spin-orbit density functional calculations of the electronic structure, Nucleus-Independent Chemical Shift (NICS) index and ELF function of the [Re2(CO)8(μ-BiPh)2] and [Re2(CO)8(μ-BiPh2)2] clusters are reported. We show here that the [Re2(CO)8(μ-BiPh)2] cluster has large negative NICS values in the region defined by the Re-Bi-Re-Bi four-membered ring and the ELF function shows significant electron delocalization density in the center of the metallic ring, thus indicating an aromatic cluster. In contrast the Re-Bi-Re-Bi four-membered ring in the [Re2(CO)8(μ-BiPh2)2] cluster has negligible paratropic ring currents and the ELF function shows a low-density region within the metallic ring indicating that aromaticity is switched off. However, the phenyl ligands in both clusters show the expected aromatic character.  相似文献   

12.
Reaction of Mo(CO)3(NCMe)3 and PPh2(o-C6H4)C(O)H (abbreviated as PCHO) at room temperature affords Mo(CO)2(η3-PCHO)2 (1), while compound 1 and the phosphine-imine complex Mo(CO)4(η2-PPh2(o-C6H4)CHNMe) (2) are obtained by using Mo(CO)3(η3-(MeNCH2)3) as the reactant. Thermal reaction of 1 with C60 products Mo(CO)2(η4-(PPh2(o-C6H4)CH)2)(η2-C60) (3) in low yield, apparently through coupling of the formyl moieties. The structures of 1 and 3 have been determined by an X-ray diffraction study. The two aldehyde groups of 1 and C60 ligand of 3 are coordinated to the molybdenum atom in a π-fashion.  相似文献   

13.
The synthesis and spectroscopic properties of a Na complex with ligand 3-aminopyrazine-2-carboxylic acid were described. The resulting complex was characterized by elemental analysis, IR, UV-Vis, NMR spectroscopy and single crystal X-ray diffraction method. The title compound crystallizes in the triclinic system with space group . The crystalline structure of this compound consists of supramolecular architectures involving strong intramolecular N—H…O in pyrazine molecules and intermolecular O—H…N, O—H…O, and N—H…N hydrogen bonds between substituted pyrazine and water molecules.  相似文献   

14.

Abstract  

Thermolysis of cis-Fe(CO)4(SiCl3)2 results in the formation of the novel compound Fe2(CO)62-SiCl2)3, which was characterized by single crystal X-ray diffraction. Density functional theory calculations were carried out to elucidate possible reaction steps leading to the formation of Fe2(CO)6(SiCl2)3, including CO dissociation and chlorine abstraction by a SiCl3 radical generated from homolytic Fe–Si bond cleavage involving a singlet–triplet intersystem crossing.  相似文献   

15.
The product of the thermal reaction between cobalt acetate hydrate and benzoic acid reacts with a triethylamine excess to form the trinuclear complex Co3(μ-OOCPh)4(μ,η2-OOCPh)2[OC(Ph)OHNEt3]2, and its reaction with 3,5-dimethylpyrazole yields the mononuclear complex Co(Hdmpz)2(OOCPh)2. The compound structures are discussed on the basis of X-ray crystallographic data.  相似文献   

16.
The thermal behaviors of the chelate Ni(iso-Bu2PS2)2 (I) and the mixed-ligand complexes Ni(2,2′-Bipy)(iso-Bu2PS2)2 (II) and Ni(Phen)(iso-Bu2PS2)2 (III) in air are reported. These compounds can pass into the gas phase, as was demonstrated by vacuum sublimation for I and by vacuum distillation for II and III in a gradient furnace. The mass spectra of IIII are presented and discussed. The temperature dependence of the saturation vapor pressure over I and ΔH T 0 and ΔS T 0 and of evaporation of I determined by the vapor transport method are reported.  相似文献   

17.
Reactions of [(dtc)2Mo2(S)2(μ-S)2] with one or two equivalents of CuBr in CH2Cl2 afforded two new heterobimetallic sulfide clusters, [(dtc)2Mo23-S)(μ-S)3(CuBr)] (1) and [(dtc)2Mo23-S)4(CuBr)2] (2). Both compounds were characterized by elemental analysis, IR, UV-vis and X-ray analysis. Compound 1 contains a butterfly-shaped Mo2S4Cu core in which one CuBr unit is coordinated by one bridging S and two terminal S atoms of the [(dtc)2Mo2(S)2(μ-S)2] moiety. In the structure of 2, one [(dtc)2Mo2(S)2(μ-S)2] moiety and two CuBr units are held together by six Cu-μ3-S bonds, forming a cubane-like Mo2S4Cu2 core.  相似文献   

18.
The compounds [{VO(O2)2(NH3)}2{μ-Cu(NH3)4}] (1) and [Zn(NH3)4][VO(O2)2(NH3)]2 (2) were prepared and characterized by elemental analysis and infrared spectra. The single crystal X-ray study revealed that the structure of 1 consists of trinuclear complex molecules [(NH3)OV(O2)2{μ-Cu(NH3)4}(O2)2VO(NH3)] with a rare heterobimetalic peroxo bridge: copper(II)–peroxo ligand–vanadium(V). The structure of 2 is composed of tetraamminezinc(II) cations and ammineoxodiperoxovanadate(V) anions. In course of thermal decomposition of 1 performed up to 620 °C, the following intermediate products: [Cu(NH3)2(VO3)2], and subsequently a mixture of V2O5 with monoclinic β-Cu2V2O7, were gradually formed. The final product of decomposition is Cu(VO3)2. The thermal decomposition of 2 is a two-step process. In the first stage, [Zn(NH3)3(VO3)2] as supposed intermediate was formed, which transformed at higher temperatures by release of ammonia molecules to the monoclinic modification of Zn(VO3)2.  相似文献   

19.

Abstract  

Products from the thermolysis of PhNCO and [MoO2(S2CNR2)2] (R = Me, Et) are highly dependent upon the reaction conditions. When carried out in air, the major products are cations, [Mo(NPh)(S2CNR2)3]+, as shown by a crystal structure of [Mo(NPh)(S2CNEt2)3]2[Mo6O19]. Under rigorously anaerobic conditions, reaction of two equivalents of PhNCO with [MoO2(S2CNR2)2] affords [Mo(NPh)2(S2CNR2)2] as the major product. However, chloroform solutions of the bis(imido) complexes hydrolyze in air to afford [Mo(NPh)(S2CNR2)2(μ-MoO4)]2, in which molybdate groups bridge between molybdenum(VI) imido-bis(dithiocarbamate) centers. These results are placed in context of our earlier studies of these reactions that lead to the formation of oxo-disulfide [MoS2(NPh)(S2CNR2)2] and dimeric molybdenum(V) [MoO(μ-NPh)(S2CNR2)]2 complexes, thus allowing a full picture of these transformations to be established.  相似文献   

20.
Two metal-organic coordination polymers [Cu(bpy)2(H2O)2](NO3)2·4.5C2H5OH (1) and [Cu2(bpy)(H2O)(L-pha) 2](NO3)2·H2O (2) (L-Hpha = L-phenylalanine, bpy = 4,4′-bipyridyl) are prepared by slow evaporation of an aqueous alcoholic solution of copper nitrate, L-phenylalanine, and 4,4′-bipyridyl. The structure and composition of the obtained compounds are determined by single crystal XRD. The framework of compound 1 is positively charged and forms two types of intersecting channels. Compound 2 is a homochiral metal-organic coordination polymer whose structure contains L-phenylalanine anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号