首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
光捕获系统在自然界光合作用过程中起着至关重要的作用.模拟自然界的光捕获体系,在生物成像、发光器件、光催化以及解决人类面临的能源问题等方面均具有重要意义[1].目前,在水相中构筑高效的人工光捕获系统已取得一系列重要进展[2].然而,为了更好地理解并模拟自然界中以多通道信息通讯为特征的捕光天线系统[3],构筑具有多步连续能量转移特征并能实现光能到化学能转化的人工光捕获体系仍然是一项具有挑战性的工作.  相似文献   

2.
<正>自组装是组装基元通过非共价键的相互作用自发形成特定结构的过程,是创造新物质和产生新功能的重要手段。自然界光合作用中心的原初反应是由集成在光合膜中的功能分子组装体高效完成。通过分子设计和组装手段构筑人工光合组装体不仅可以从结构和功能上模拟自然界光合作用中心制氢放氧的反应过程,而且能够为设计具有高效光催化分解水功能的人工光合组装体开辟新途径。  相似文献   

3.
张德善  佟振合  吴骊珠 《化学进展》2022,34(7):1590-1599
光合作用将太阳能储存在化学反应中,是绿色高效的能量转换途径。模拟自然光合作用系统活性中心的结构和功能,实现小分子物质(H2O、CO2、N2等)中惰性化学键的活化转化,对于解决能源和环境等问题具有重要意义。本文综述了人工光合作用在水分解、二氧化碳及氮气还原领域取得的重要进展,分析了相关光化学转换体系的设计思路和工作原理,并对人工光合作用面临的挑战和未来发展方向进行讨论。  相似文献   

4.
酶-光偶联催化系统(EPCS)集成了半导体的光吸收能力和酶的高活性/特异性,可模拟自然界光合作用实现太阳能驱动的有用化学品合成.作为EPCS中的“能量货币”,辅因子(如NAD(P)+和NAD(P)H)参与了约80%的酶促氧化还原反应,且在酶-光间充当物质/能量交换的枢纽.然而, EPCS涉及光催化和酶催化反应,涉及分子、电子和质子传递过程,属于典型的复杂多相反应,导致其光-化学转化效率与理论值差距较大.本文从微观尺度对EPCS中分子-电子-质子传递过程进行了理解和剖析,系统介绍了自然界光合作用和EPCS中的“新三传”(即质量传递、热量传递和动量传递)现象.与传统化工领域通过强化宏观尺度上“三传”提升单元操作过程效率的方法类似,本文总结并提出了通过协调优化“新三传”(即分子传递、电子传递和质子传递)来强化EPCS中物质-能量耦合关系,进而提升光-化学转化效率的新策略.其中,分子传递主要包括电子供体分子从反应液向催化剂传递以及辅因子分子在光催化模块和酶催化模块间穿梭;电子传递主要包括光生电子从其生成位点到光催化剂表面进而到电子媒介的传递;质子传递主要包括质子从溶液或催化剂表面向电子媒介的传...  相似文献   

5.
从热力学角度研究光合作用效率是理解光合作用机制、实现人工光合过程的重要方法。本文概述了对光合作用进行热力学能量衡算、熵分析和有效能分析的研究进展,着重介绍了光合作用有效能效率的计算模型及其发展。同时,本文还介绍了人工光合作用的部分最新研究成果。  相似文献   

6.
以半导体等为催化剂,在太阳能作用下将CO2和H2O转化为可再生燃料与氧气的“人工光合作用”有望同时解决目前面临的严峻能源和环境问题,因而备受关注.但半导体催化剂光谱响应范围较窄、表面反应动力学缓慢,从而导致目前仍无法获得可观的太阳能-燃料转换效率.已有很多研究采用了晶面调控、元素掺杂和异质结构建等方法,以提高半导体光催化剂的太阳能-燃料转换效率,但效果仍不令人满意,主要原因是半导体光催化剂很难在吸收带边-氧化还原能力和活性-稳定性这两种关系中取得较好的平衡.此外,光催化反应中的动力学也是主要问题之一,尤其在人工光合作用反应中,CO2还原半反应和H2O氧化半反应的动力学均较困难, 这已成为共识, 而解决这个问题, 将有助于我们从一新的角度理解光催化过程, 从而提升光催化反应性能.本文以Au NP/金红石为模型催化剂, 纯金红石为参照, 证明了存在太阳光中的红外光致热和可见光诱导的等离激元热效应等两类光致热效应, 它们均可以促进人工光合作用反应. 研究发现, 人工光合作用反应与其他许多化学反应一样, 表观活化能为正, 从而表明动力学因素在该反应中起着重要作用. 此外, 根据不同反应温度下的结果, 通过计算Au NP/金红石和纯金红石上生成CO和CH4的表观活化能, 发现在这二种样品上CH4的表观活化能均高于CO, 这就从动力学上解释了热力学上更容易得到的CH4在绝大多光催化CO2还原反应中的产率均低于CO. 此外, 无论是对于CO还是CH4, Au NP/金红石的催化表观活化能均低于纯金红石的. 因此, 本文从实验上提供了贵金属纳米粒子改善人工光合作用动力学的实验证据,并从动力学角度解释了人工光合作用反应中的活性和选择性问题. 本研究证明了动力学因素在光催化反应, 尤其是人工光合作用反应中的重要性, 并提出了从动力学角度提升人工光合作用反应的新方法, 即利用太阳光的光致热效应加速反应, 这不仅有助于提升太阳能转化效率, 也有望减少反应设备成本, 从而促进其大规模应用.  相似文献   

7.
受植物光合作用的启发,研究者发展了多种模拟光合作用体系用于光分解水、二氧化碳光还原和氮光固定以生产"太阳燃料"(如氢气、甲烷和氨气),以期缓解当前的能源短缺和环境污染。尽管基于人造半导体材料的光合作用是一种潜在、理想的以"太阳燃料"的化学键形式存储太阳能的方法,但是构筑能够在规模和成本方面与化石燃料竞争的生产"太阳燃料"的人工光合作用体系仍然存在巨大的挑战。因此,开发低成本的高效光催化剂对于促进人工光合作用的三种主要光催化过程(光俘获、电荷产生与分离,以及表面/界面催化反应)具有重要的意义。在已研究的各类光催化剂中,Z-型异质结复合体系不仅可以提高光俘获能力和显著抑制电荷载流子复合,而且还可通过保持光激发电子/空穴的强还原/氧化能力来促进表面/界面催化反应,因而受到广泛关注。将太阳能转化为化学能的Z-型纳米异质结的研究证明这些异质结在提高生产"太阳燃料"的光催化反应体系的整体效率方面的重要性。该综述主要介绍了Z-型异质结的发展历史和直接Z-型异质结相较于传统II型异质结、液相Z-型和全固态Z-型异质结的优势,并阐述了两步激发Z-型光催化体系的反应机理和途径。然后,从材料组成角度重点介绍了近5年来不同类型Z-型纳米结构材料(无机,有机和无机-有机复合材料)在光催化能源转换领域的应用,以及提高Z-型纳米结构材料光催化性能的各种调控/工程策略(如扩展光谱吸收区、促进电荷转移/分离和表面化学改性等)。此外,还讨论了Z-型光催化机理的表征方法与策略(如金属负载法、牺牲试剂测试法、自由基捕集实验、原位X-射线光电子能谱、光催化还原实验、Kelvin探针力显微镜、表面光电压光谱、瞬态吸收光谱及理论计算等)及光催化性能的评价方法和标准。最后,介绍了Z-型异质结光催化体系目前面临的挑战和发展方向。我们希望该综述能为光催化体系的性能突破方向提供新的认识,并为新型Z-型光催化材料的设计和构筑提供指导。  相似文献   

8.
以半导体等为催化剂,在太阳能作用下将CO_2和H_2O转化为可再生燃料与氧气的"人工光合作用"有望同时解决目前面临的严峻能源和环境问题,因而备受关注.但半导体催化剂光谱响应范围较窄、表面反应动力学缓慢,从而导致目前仍无法获得可观的太阳能-燃料转换效率.已有很多研究采用了晶面调控、元素掺杂和异质结构建等方法,以提高半导体光催化剂的太阳能-燃料转换效率,但效果仍不令人满意,主要原因是半导体光催化剂很难在吸收带边-氧化还原能力和活性-稳定性这两种关系中取得较好的平衡.此外,光催化反应中的动力学也是主要问题之一,尤其在人工光合作用反应中, CO_2还原半反应和H_2O氧化半反应的动力学均较困难,这已成为共识,而解决这个问题,将有助于我们从一新的角度理解光催化过程,从而提升光催化反应性能.本文以AuNP/金红石为模型催化剂,纯金红石为参照,证明了存在太阳光中的红外光致热和可见光诱导的等离激元热效应等两类光致热效应,它们均可以促进人工光合作用反应.研究发现,人工光合作用反应与其他许多化学反应一样,表观活化能为正,从而表明动力学因素在该反应中起着重要作用.此外,根据不同反应温度下的结果,通过计算AuNP/金红石和纯金红石上生成CO和CH4的表观活化能,发现在这二种样品上CH4的表观活化能均高于CO,这就从动力学上解释了热力学上更容易得到的CH4在绝大多光催化CO_2还原反应中的产率均低于CO.此外,无论是对于CO还是CH4, AuNP/金红石的催化表观活化能均低于纯金红石的.因此,本文从实验上提供了贵金属纳米粒子改善人工光合作用动力学的实验证据,并从动力学角度解释了人工光合作用反应中的活性和选择性问题.本研究证明了动力学因素在光催化反应,尤其是人工光合作用反应中的重要性,并提出了从动力学角度提升人工光合作用反应的新方法,即利用太阳光的光致热效应加速反应,这不仅有助于提升太阳能转化效率,也有望减少反应设备成本,从而促进其大规模应用.  相似文献   

9.
刘蕾  刘劲刚 《化学进展》2013,(4):563-576
人工光合成是受到植物光合作用启发而兴起的前沿科研领域,对于新型能源的探索具有重要的研究价值。本文首先从植物光合作用的原理和关键化学过程出发,介绍了人工光合成体系的构建原则与方法,着重阐述了过渡金属配合物光催化剂在人工光合成各半反应(水的光催化氧化分解与CO2的还原转换)中的应用。其次,分析整理了近期国内外重点研究的过渡金属配合物光催化剂的种类,评价了各类过渡金属配合物光催化剂的结构特征及由其组成的不同光催化体系的特点和催化性能的差别,讨论了部分光催化剂的催化机理及优化其催化性能的方法。最后,展望了过渡金属配合物光催化剂在人工光合成领域的研究前景及发展方向。  相似文献   

10.
张圆正  谢利利  周怡静  殷立峰 《化学进展》2016,28(10):1528-1540
光催化技术可将太阳能转化为可存储能源,还可直接利用太阳能分解污染物,是缓解能源紧张,净化环境的有效途径。Z型光催化体系可模拟光合作用过程,在可见光下具有较高的光能转化效率,成为近年来的研究热点,而碳化氮等二维纳米材料的发展进一步启发人们基于微观二维结构构建Z型光催化体系,以强化其光谱响应能力、载流子分离效率、氧化还原能力以及光蚀稳定性。本文综述了近年来二维Z型光催化材料在基础理论,合成方法方面的研究进展及其在环境和能源领域的应用情况,并对二维Z体系在光催化领域的研究前景进行了展望。  相似文献   

11.
The Oxygen Evolving Complex in photosystem II, which is responsible for the oxidation of water to oxygen in plants, algae and cyanobacteria, contains a cluster of one calcium and four manganese atoms. This cluster serves as a model for the splitting of water by energy obtained from sunlight. The recent published data on the mechanism and the structure of photosystem II provide a detailed architecture of the oxygen-evolving complex and the surrounding amino acids. Biomimetically, we expect to learn some strategies from this natural system to synthesize an efficient catalyst for water oxidation, that is necessary for artificial photosynthesis.  相似文献   

12.
The use of sunlight as a renewable source of energy must increase in future. The potential methods of transformation and storage are on a different level of state of the art. The present article reviews the various approaches. Focus is on transformation and storage of sunlight as chemical energy by photocatalytic processes. Photosynthesis of green plants represents both example and prototype. Research interest and endeavor in artificial photosynthesis, in particular for photocatalytic splitting of water and photochemical transformation of carbon dioxide, have increased enormously. Silicon‐based photovoltaic has achieved industrial ripeness and broad application in everyday life.  相似文献   

13.
Artificial photosynthesis—reduction of CO2 into chemicals and fuels with water oxidation in the presence of sunlight as the energy source—mimics natural photosynthesis in green plants, and is considered to have a significant part to play in future energy supply and protection of our environment. The high quantum efficiency and easy manipulation of heterogeneous molecular photosystems based on metal complexes enables them to act as promising platforms to achieve efficient conversion of solar energy. This Review describes recent developments in the heterogenization of such photocatalysts. The latest state‐of‐the‐art approaches to overcome the drawbacks of low durability and inconvenient practical application in homogeneous molecular systems are presented. The coupling of photocatalytic CO2 reduction with water oxidation through molecular devices to mimic natural photosynthesis is also discussed.  相似文献   

14.
The development of green and renewable energy sources is in high demand due to energy shortage and productivity development. Artificial photosynthesis(AP) is one of the most effective ways to address the energy shortage and the greenhouse effect by converting solar energy into hydrogen and other carbon-based high value-added products through the understanding of the mechanism, structural analysis, and functional simulation of natural photosynthesis. In this review, the development of AP from natural catalysts to artificial catalysts is described, and the processes of oxygen production, hydrogen production, and carbon fixation are sorted out to understand the properties and correlations of the core functional components in natural photosynthesis, to provide a better rational design and optimization for further development of advanced heterogeneous materials.  相似文献   

15.
李仁贵 《催化学报》2018,39(7):1180-1188
氨不仅是一种广泛使用的化工原料,还可用作重要的能源载体.哈伯法合成氨被认为是20世纪最伟大的发明之一,为人类社会的发展做出了巨大贡献.同时,氨合成过程每年需要消耗世界总能源的1%–2%.因此,开发绿色清洁的氨合成方法一直是世界范围内工业界和学术界关注的热点.随着人工光合成太阳燃料研究的蓬勃发展,利用太阳能光催化的方式实现在温和条件下合成氨吸引了越来越多研究者的兴趣,因为这是一条最为理想的能源利用途径,即直接利用太阳能将氮气和水转化为氨.近期,该研究领域涌现了一系列有代表性的研究工作,报道了利用半导体光催化剂实现太阳能到氨的转化,虽然整体效率仍很低,但是已经证明了利用太阳能直接将氮气转化为氨的可能性.光催化合成氨过程中,最具挑战的是氮气分子在半导体光催化剂表面的吸附和活化.研究表明,通过在半导体光催化剂表面引入空位或者缺陷可有效地增加氮气的吸附,且很可能成为氮气分子活化并参与反应的活性中心.此外,借鉴自然界豆类植物固氮酶的独特结构,利用其对于氮气分子高效活化的独特优势,构建自然-人工杂化体系也是提升氮气吸附与活化的有效策略之一.本综述将从合成氨过程中氮气的吸附与活化问题入手,分别从缺陷与空位调控和固氮酶两个方面的策略考虑,结合几个典型的光催化剂体系(如卤氧化铋,二氧化钛及水滑石等)作为示例,介绍空位调控与模拟固氮酶策略对太阳能光催化固氮的影响并分析其可能的机理.虽然人工光合成固氮研究取得了一些进展,但是目前效率太低,亟需从基础科学问题的认识和理解上有新的突破,如氮气分子的吸附与活化微观过程、空位可控调变策略、新型光催化剂的开发与表界面修饰、氨氧化逆反应的抑制策略及精确的理论模拟指导人工光合成固氮体系的构建等.最后,对人工光合成固氮研究方向面临的挑战和未来的发展方向进行了总结与展望.  相似文献   

16.
Efficient harvesting of unlimited solar energy and its conversion into valuable chemicals is one of the ultimate goals of scientists. With the ever‐increasing concerns about sustainable growth and environmental issues, numerous efforts have been made to develop artificial photosynthetic process for the production of fuels and fine chemicals, thus mimicking natural photosynthesis. Despite the research progress made over the decades, the technology is still in its infancy because of the difficulties in kinetic coupling of whole photocatalytic cycles. Herein, we report a new type of artificial photosynthesis system that can avoid such problems by integrally coupling biocatalytic redox reactions with photocatalytic water splitting. We found that photocatalytic water splitting can be efficiently coupled with biocatalytic redox reactions by using tetracobalt polyoxometalate and Rh‐based organometallic compound as hole and electron scavengers, respectively, for photoexcited [Ru(bpy)3]2+. Based on these results, we could successfully photosynthesize a model chiral compound (L ‐glutamate) using a model redox enzyme (glutamate dehydrogenase) upon in situ photoregeneration of cofactors.  相似文献   

17.
Scalable solar hydrogen production by water splitting using particulate photocatalysts is promising for renewable energy utilization. However, photocatalytic overall water splitting is challenging owing to slow water oxidation kinetics, severe reverse reaction, and H2/O2 gas separation. Herein, mimicking nature photosynthesis, a practically feasible approach named Hydrogen Farm Project (HFP) is presented, which is composed of solar energy capturing and hydrogen production subsystems integrated by a shuttle ion loop, Fe3+/Fe2+. Well‐defined BiVO4 crystals with precisely tuned {110}/{010} facets are ideal photocatalysts to realize the HFP, giving up to 71 % quantum efficiency for photocatalytic water oxidation and full forward reaction with nearly no reverse reaction. An overall solar‐to‐chemical efficiency over 1.9 % and a solar‐to‐hydrogen efficiency exceeding 1.8 % could be achieved. Furthermore, a scalable HFP panel for solar energy storage was demonstrated under sunlight outdoors.  相似文献   

18.
Natural photosynthesis (NP) generates oxygen and carbohydrates from water and CO2 utilizing solar energy to nourish lives and balance CO2 levels. Following nature, artificial photosynthesis (AP), typically, overall water or CO2 splitting, produces fuels and chemicals from renewable energy. However, hydrogen evolution or CO2 reduction is inherently coupled with kinetically sluggish water oxidation, lowering efficiencies and raising safety concerns. Decoupled systems have thus emerged. In this review, we elaborate how decoupled artificial photosynthesis (DAP) evolves from NP and AP and unveil their distinct photoelectrochemical mechanisms in energy capture, transduction and conversion. Advances of AP and DAP are summarized in terms of photochemical (PC), photoelectrochemical (PEC), and photovoltaic-electrochemical (PV-EC) catalysis based on material and device design. The energy transduction process of DAP is emphasized. Challenges and perspectives on future researches are also presented.  相似文献   

19.
We report on the capability of polydopamine (PDA), a mimic of mussel adhesion proteins, as an electron gate as well as a versatile adhesive for mimicking natural photosynthesis. This work demonstrates that PDA accelerates the rate of photoinduced electron transfer from light‐harvesting molecules through two‐electron and two‐proton redox‐coupling mechanism. The introduction of PDA as a charge separator significantly increased the efficiency of photochemical water oxidation. Furthermore, simple incorporation of PDA ad‐layer on the surface of conducting materials, such as carbon nanotubes, facilitated fast charge separation and oxygen evolution through the synergistic effect of PDA‐mediated proton‐coupled electron transfer and the high conductivity of the substrate. Our work shows that PDA is an excellent electron acceptor as well as a versatile adhesive; thus, PDA constitutes a new electron gate for harvesting photoinduced electrons and designing artificial photosynthetic systems.  相似文献   

20.
Photosynthesis has been for many years a fascinating source of inspiration for the development of model systems able to achieve efficient light-to-chemical energetic transduction. This field of research, called "artificial photosynthesis," is currently the subject of intense interest, driven by the aim of converting solar energy into the carbon-free fuel hydrogen through the light-driven water splitting. In this review, we highlight the recent achievements on light-driven water oxidation and hydrogen production by molecular catalysts and we shed light on the perspectives in terms of implementation into water splitting technological devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号