首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用水热-均匀共沉淀法制备了纳米SrAl2O4∶Eu2+,Dy3+长余辉发光材料。通过XRD、TEM、荧光光谱、热释光谱对其结构和性能进行分析。XRD结果表明所制备的SrAl2O4∶Eu2+,Dy3+纳米发光材料为单相,属单斜晶系。TEM测试表明纳米SrAl2O4∶Eu2+,Dy3+发光材料为规则的球状粒子,粒径为50~80 nm,且分散性良好。激发和发射光谱测试表明,样品的激发光谱是峰值在356 nm的连续宽带谱,发射光谱是峰值位于512 nm的宽带谱,与SrAl2O4∶Eu2+,Dy3+粗晶材料相比,激发和发射光谱都出现了“蓝移”现象。样品的热释光峰值位于358 K,适合于产生长余辉。  相似文献   

2.
对SrAl2O4∶Eu2+,Dy3+长余辉材料在100~500 K温度之间的发光性能进行研究。实验结果表明,材料的荧光及余辉强度在特定温度区间内呈线性变化,在热释峰所在温度范围具有较好的发光性能。其变化规律表明SrAl2O4∶Eu2+,Dy3+长余辉材料内部陷阱中电子的释放包括瞬时释放和延时释放两种类型,其中电子瞬时释放进而跃迁发光是荧光的组成部分,延时释放产生的跃迁则导致余辉发光。陷阱和电子的复合与陷阱中电子释放过程均随温度升高而增强,但温度过高时会发生热猝灭。材料荧光强度与余辉强度在特定温度区间内随温度呈线性变化关系表明其可以作为一种光纤温度传感材料。  相似文献   

3.
以B2O3为助熔剂,在1 350 ℃、还原性气氛下成功制备了SrAl2O4单相粉末样品。用同样的方法制备了系列单相Sr1-x-yAl2O4:Eu2+x,Dy3+y·nB2O3(0.005≤x≤0.07, 0.01≤y≤0.05,0.05≤n≤0.25)样品并表征了其长余辉发光特性。结果表明,最佳的Eu2+含量为0.02。辅助激活离子Dy3+在Sr0.98Al2O4:Eu2+0.02中的掺杂在一定范围内可以显著提高亮度和余辉时间,最佳Dy3+含量为0.03。研究不同B2O3含量对Sr0.95Al2O4:Eu2+0.02,Dy3+0.03发光性能的影响,结果说明最佳的B2O3含量为n=0.1,余辉肉眼可见(≥0.32 mcd·m-2)时间达4 000 min。利用正电子湮灭技术和热释光技术,研究和讨论了B2O3对Sr0.95Al2O4:Eu2+0.02,Dy3+0.03的发光和余辉性能的影响,结果表明B2O3的添加有助于Dy3+在晶格中形成深度合适、有益于余辉的空位缺陷。  相似文献   

4.
采用沉淀法制备了高亮度的长余辉发光材料Sr2MgSi2O7∶Eu2+,Dy3+。通过XRD、荧光光谱和热释光谱对其进行表征。XRD测试表明所制备的Sr2MgSi2O7∶Eu2+,Dy3+为单相,四方晶。荧光光谱测试表明,用λem=467 nm作为监控波长,在275~450 nm之间有宽的激发光谱,峰值位于399 nm。用λex=399 nm激发样品,其发射光谱为一宽带,峰值位于467 nm。1 050 ℃煅烧前躯体所制备的Sr2MgSi2O7∶Eu2+,Dy3+发光性能最好。热释光谱峰值位于357 K,适合长余辉现象的产生。对Sr2MgSi2O7∶Eu2+,Dy3+长余辉发光机理进行了讨论。  相似文献   

5.
采用共沉淀法及1 200 ℃后续煅烧4 h,成功制备了CaSb2O6:Bi3+,Eu3+荧光粉,并对其结构及发光性能进行了研究。所制备荧光粉颗粒为六边形类圆饼状,平均尺寸在100~600 nm之间。对CaSb2O6:Bi3+,Eu3+发光的机理分析表明,Bi3+对Eu3+的发光存在高效的敏化与能量传递。当Bi3+和Eu3+的掺杂浓度分别为0.5%和8%,Eu3+位于580 nm(5D07F0 )处的荧光发射显著增强,Bi3+,Eu3+共掺样品的荧光强度是CaSb2O6:Eu3+的10倍左右。调节Bi3+/Eu3+离子掺杂比,色坐标呈现了从蓝、白光到红光的变化,表明该荧光粉可分别作为蓝或红色荧光粉使用,甚至可实现从蓝、白光到红光的自由调控,这为白光LED荧光粉的发展提供了参考。  相似文献   

6.
采用静电纺丝技术制备了PVP/[Y(NO3)3+Eu(NO3)3]复合纳米带,将其进行热处理,获得了Y2O3∶Eu3+纳米带。采用XRD、FTIR、SEM、TEM、荧光光谱等技术对焙烧后的样品进行了表征。结果表明:600 ℃焙烧即可获得Y2O3∶Eu3+纳米带,800 ℃时结晶更为良好,产物属于立方晶系。纳米带表面光滑,由平均直径为30 nm的小颗粒紧密排列而成,为多晶结构。随着温度升高,纳米带宽度减小。焙烧800 ℃获得的Y2O3∶Eu3+纳米带的发光性质优于焙烧600 ℃的Y2O3∶Eu3+纳米带。与体材料相比,该纳米带的激发光谱Eu3+-O2-电荷迁移态(CTB)发生红移,发射光谱发生蓝移。  相似文献   

7.
共沉淀-熔盐法制备BaMoO4∶Eu3+及其发光性能研究   总被引:1,自引:0,他引:1  
以KCl-NaCl为熔盐,采用共沉淀前躯体-熔盐辅助焙烧法合成了红色发光材料BaMoO4∶Eu3+。运用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)及荧光光谱(PL)等测试手段,研究了熔盐辅助焙烧温度对粉体相结构、形貌和发光性能的影响,并对比了直接采用共沉淀法合成BaMoO4∶Eu3+的结构与发光性能。结果表明:采用两种方法制备的BaMoO4∶Eu3+均是纯相,粒径随温度升高而增大。当KCl-NaCl复合熔盐焙烧温度大于700 ℃,BaMoO4晶粒在熔盐中实现了(111)面取向生长,得到均一的尖晶石型BaMoO4∶Eu3+微晶。光谱研究表明:共沉淀前躯体-熔盐辅助焙烧法合成样品在615 nm处的Eu3+5D0-7F2发射明显得到加强,样品发出明亮的红色发射光。  相似文献   

8.
采用溶胶凝胶法制得高纯的B2O3-CaO∶Eu3+荧光粉。用XRD、IR对不同退火温度下所得样品的结构进行表征,结果发现随退火温度的变化,能形成不同结构的硼酸盐基质。通过对以不同结构硼酸盐为基质荧光粉的激发、发射谱图及荧光衰减曲线的分析,探讨了材料的发光性能和发光机理。结果表明,在不同结构硼酸盐基质中,Eu3+都处于无反演对称中心格位,以(5D0F2)电偶极跃迁为主,所以材料主要发红光;且900℃退火所得高纯相的CaB2O4基质最有利于发光、对应的荧光衰减时间最长,这都因在此荧光粉中Eu3+更易取代Ca2+,并形成相对较多的p-n结和陷阱所致。  相似文献   

9.
以α-Si3N4,SrCO3,Eu2O3为原料,采用碳热还原氮化法制备了Sr2Si5N8∶Eu2+荧光粉。研究了材料的结构与光谱特性,分析了影响材料发光性能的工艺因素。结果表明,石墨粉含量和助熔剂的用量对Sr2Si5N8相的形成和发光性能有重要影响。当nC/nSr=1.5,助熔剂用量为4wt%时,合成样品的主晶相为正交晶系Sr2Si5N8,在400~550 nm可见光激发下,可发射峰值波长位于609 nm荧光。激发带的位置与Eu2+离子浓度无关,为400~550 nm之间的宽带激发;但发射强度随Eu2+离子浓度的增加而增加,Eu2+离子浓度达到5mol%时发射强度达最大值,在Eu2+离子浓度为2mol%~5mol%之间,观察到发射峰的红移现象。  相似文献   

10.
综合ZnO-Al2O3-SiO2系和锗酸盐玻璃陶瓷的优点,采用熔融-晶化法首次制备了Ho3+/Yb3+共掺以ZnAl2O4为主晶相的ZnO-Al2O3-GeO2-SiO2系玻璃陶瓷。因[GeO4]四面体和[SiO4]四面体都是玻璃网络形成体,讨论了GeO2取代SiO2对玻璃陶瓷样品硬度及发光性能的影响,最终确定GeO2的取代量为10.55%(w/w)时,玻璃陶瓷综合性能最佳。在980 nm泵浦光的激发下,发现强的绿色(546 nm)和弱的红色(650 nm)上转换发光,并研究了不同Ho3+/Yb3+掺杂比对样品上转换发光的影响,最终结果表明当Ho3+/Yb3+掺杂比为1:11(n/n)时样品荧光强度最强,在绿色上转换发光材料方面具有潜在的应用。  相似文献   

11.
Scandium magnesium gallide, Sc2MgGa2, and yttrium magnesium gallide, Y2MgGa2, were synthesized from the corresponding elements by heating under an argon atmosphere in an induction furnace. These intermetallic compounds crystallize in the tetragonal Mo2FeB2‐type structure. All three crystallographically unique atoms occupy special positions and the site symmetries of (Sc/Y, Ga) and Mg are m2m and 4/m, respectively. The coordinations around Sc/Y, Mg and Ga are pentagonal (Sc/Y), tetragonal (Mg) and triangular (Ga) prisms, with four (Mg) or three (Ga) additional capping atoms leading to the coordination numbers [10], [8+4] and [6+3], respectively. The crystal structure of Sc2MgGa2 was determined from single‐crystal diffraction intensities and the isostructural Y2MgGa2 was identified from powder diffraction data.  相似文献   

12.
13.
14.
15.
The structures of the hypophosphites KH2PO2 (potassium hypophosphite), RbH2PO2 (rubidium hypophosphite) and CsH2PO2 (caesium hypophosphite) have been determined by single‐crystal X‐ray diffraction. The structures consist of layers of alkali cations and hypophosphite anions, with the latter bridging four cations within the same layer. The Rb and Cs hypophosphites are isomorphous.  相似文献   

16.
Summary The ability of [MoS4]2–, anions to be used as ligands for transition metal ions has been widely demonstrated, especially with Fe2+. The present study has been restricted to linear complexes such as (NEt4)2 [Cl2FeS2MoS2] and (NEt4)2[Cl2FeS2MoS2FeCl2]. Their electrochemical properties are described: upon electrochemical reduction, these compounds yield MoS2, as a black precipitate, and an iron complex in solution, assumed to be [SFeCl2]2–. The electrochemical reduction goes through two electron transfers, coupled with the breakdown of the molecular skeleton: a DISPl and an ECE mechanism. Depending on the solvent, the following equilibrium may be observed: [Cl4Fe2MoS4]2–[Cl2FeMoS4]2–+FeCl2. The equilibrium constant, KD, was evaluated by differential pulse polarography. KD is tightly related to the donor number of the solvent.  相似文献   

17.
On Dialkali Metal Dichalcogenides β-Na2S2, K2S2, α-Rb2S2, β-Rb2S2, K2Se2, Rb2Se2, α-K2Te2, β-K2Te2 and Rb2Te2 The first presentation of pure samples of α- and β-Rb2S2, α- and β-K2Te2, and Rb2Te2 is described. Using single crystals of K2S2 and K2Se2, received by ammonothermal synthesis, the structure of the Na2O2 type and by using single crystals of β-Na2S2 and β-K2Te2 the Li2O2 type structure will be refined. By combined investigations with temperature-dependent Guinier-, neutron diffraction-, thermal analysis, and Raman-spectroscopy the nature of the monotropic phase transition from the Na2O2 type to the Li2O2 type will be explained by means of the examples α-/β-Na2S2 and α-/β-K2Te2. A further case of dimorphic condition as well as the monotropic phase transition of α- and β-Rb2S2 is presented. The existing areas of the structure fields of the dialkali metal dichalcogenides are limited by the model of the polar covalence.  相似文献   

18.
Wu YT  Linden A  Siegel JS 《Organic letters》2005,7(20):4353-4355
[reaction: see text] Fluoranthene 2 and heptacycle 3 are easily accessible from the reaction of diyne 1 and norbornadiene (NBD) in the presence of the rhodium catalyst. The unusual [(2+2)+(2+2)] adduct 3 was confirmed by the X-ray crystal structure analysis.  相似文献   

19.
[(n‐Bu)2Sn(O2PPh2)2] ( 1 ), and [Ph2Sn(O2PPh2)2] ( 2 ) have been synthesized by the reactions of R2SnCl2 (R=n‐Bu, Ph) with HO2PPh2 in Methanol. From the reaction of Ph2SnCl2 with diphenylphosphinic acid a third product [PhClSn(O2PPh2)OMe]2 ( 3 ) could be isolated. X‐ray diffraction studies show 1 to crystallize in the monoclinic space group P21/c with a = 1303.7(1) pm, b = 2286.9(2) pm, c = 1063.1(1) pm, β = 94.383(6)°, and Z = 4. 2 crystallizes triclinic in the space group , the cell parameters being a = 1293.2(2) pm, b = 1478.5(4) pm, c = 1507.2(3) pm, α = 98.86(3)°, β = 109.63(2)°, γ = 114.88(2)°, and Z = 2. Both compounds form arrays of eight‐membered rings (SnOPO)2 linked at the tin atoms to form chains of infinite length. The dimer 3 consists of a like ring, in which the tin atoms are bridged by methoxo groups. It crystallizes triclinic in space group with a = 946.4(1) pm, b = 963.7(1) pm, c = 1174.2(1) pm, α = 82.495(6)°, β = 66.451(6)°, γ = 74.922(6)°, and Z = 1 for the dimer. The Raman spectra of 2 and 3 are given and discussed.  相似文献   

20.
The structures of isomorphous monoclinic strontium and lead bis­(di­hydrogenphosphate), Sr(H2PO2)2 and Pb(H2PO2)2, and orthorhombic barium bis­(di­hydrogen­phos­phate), Ba(H2PO2)2, consist of layers of hypophosphite anions and metal cations exhibiting square antiprismatic coordination by O atoms. The Sr and Pb atoms are located on sites with point symmetry 2, and the Ba atoms are on sites with point symmetry 222. Within the layers, each anion bridges four metal cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号