首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用液相还原法制备非负载型镍催化剂,将非负载型镍催化剂分散在液相供氢溶剂十氢萘中,催化合成气甲烷化反应。在高压反应釜内,考察了反应温度、物质的量比等操作条件下,镍催化剂催化合成气甲烷化反应的反应活性。并对催化剂进行XRD、SEM、H2-TPR表征分析。研究结果表明,在330℃、催化剂用量为2%时,产品气中甲烷含量可达89.39%,CO和H2的转化率分别为94.56%和92.60%;催化剂用量为4%时,产品气中甲烷含量可高达94.26%,CO的转化率可达到99%以上。合成气甲烷化反应的最佳操作温度为330℃,H2/CO物质的量比最佳为2.20~2.67。  相似文献   

2.
以泡沫镍为催化剂,在600和700℃下,以CVD法热解乙炔气体制备大量的纳米碳纤维.随着制备温度增加,纳米碳纤维直径变小,竹节状含量减少, d002值减小,微晶片层平面Lc和La值增大,碳材料的可逆容量则下降.分别用透射电镜、 X射线衍射和拉曼光谱观察和测定了纳米碳纤维的形貌、微结构,发现在不同条件下生长的纳米碳纤维有不同的形貌和结构.对纳米碳纤维的电化学嵌锂性能的研究表明,纳米碳纤维的结构对其电化学嵌锂容量和充放电循环寿命起重要影响,制备温度越低,纳米碳纤维的石墨化程度越差,可逆嵌锂容量相应要高一些.  相似文献   

3.
 采用常规加热和微波加热方法制备了两种泡沫镍负载La3+掺杂的纳米TiO2光催化剂,以甲醛光催化降解为模型反应,考察了制备方法和掺杂La3+对催化剂催化性能的影响,并采用扫描电镜、透射电镜、 X射线衍射和能量分散式光谱分析对催化剂进行了表征. 结果表明,微波加热法制备的纳米TiO2具有典型的锐钛矿型晶体结构,其粒径均匀且明显小于常规加热法制备的催化剂. 泡沫镍负载1.5%La3+掺杂的TiO2的光催化性能得到明显改善,反应90 min后甲醛的降解率仍达到93%. 在实验中发现催化剂有失活现象,但经简单清洗后其活性能够恢复.  相似文献   

4.
在烯烃聚合领域中,催化剂决定了所得聚合物的分子量与分布以及微观结构,进而影响聚烯烃材料的物理与机械性能。镍配合物催化乙烯聚合反应中,既会获得齐聚物也可能获得聚合物,有意思的是所得聚乙烯材料较容易呈现弹性体材料的性质。因此,加强镍配合物催化剂的研究有助于筛选更高活性和优良性能的催化剂体系,制备新型聚乙烯弹性体材料,甚至为该类乙烯聚合中试研究做铺垫。本文综述了近年来镍配合物催化乙烯聚合研究的新进展,重点讨论了配合物结构对于催化活性、热稳定性以及聚合产物微结构的影响与规律。  相似文献   

5.
刘平乐  L.Lefferts 《化学研究与应用》2006,18(9):1077-1080,1083
采用浸渍法在块状大孔α-氧化铝载体上负载活性组合,考察了浸渍时间、浸渍前载体的状态等因素对载体负载活性组份的影响。为了获得用于气液反应中既具有大的液固表面而催化剂内部扩散距离较小,且催化剂易于分离的新型催化体系,进一步研究了在负载了活性金属镍颗粒的块状大孔α-氧化铝上气相催化分解乙烯生长具有较大比表面积、疏松的纳米碳纤维(CNF)层,纳米碳纤维直径为10-20nm。本文制备的CNF/α-A l2O3在气液非均相催化反应中有很好的应用前景。  相似文献   

6.
采用氢电弧等离子体法制备了具有储氢性能的镍铈纳米颗粒,通过扫描电镜、透射电镜、X光电子能谱、X射线粉末衍射、程序升温还原等手段对比表征了氧化铝负载的纳米镍铈催化剂和工业用负载镍催化剂,并以裂解汽油一段加氢反应为模型反应研究了它们的催化性能.研究结果表明,纳米镍铈催化剂的催化活性和储氢性能与催化剂表面的镍铈合金有关,负载性纳米镍铈催化剂的优良选择性与其特殊的制备方法有关.  相似文献   

7.
以纳米二氧化硅为载体,树状聚酰胺-胺(PAMAM)镍络合物为催化活性中心,通过共价负载制备了一种具有良好催化活性和循环利用性的PAMAM改性纳米二氧化硅负载镍催化剂(化合物G).采用元素分析、傅里叶变换红外光谱(FTIR)、 X射线衍射(XRD)和扫描电子显微镜(SEM)表征了化合物G的组成及形貌.研究了该类负载镍催化剂催化乙烯齐聚的性能,考察了齐聚条件对其性能的影响.结果表明,化合物G具有良好的催化乙烯齐聚活性和循环利用性.基于灰色关联分析得出反应压力是影响乙烯齐聚活性的最主要因素,反应温度是影响乙烯齐聚选择性的最主要因素.当以甲基铝氧烷(MAO)为助催化剂,反应压力0.7 MPa, n(Al)/n(Ni)为500,反应温度为35℃,主催化剂用量为5μmol时,化合物G催化乙烯齐聚活性为3.75×105 g/(mol Ni·h),齐聚产物中C4~C8烯烃选择性为94.98%.化合物G的树状效应使其金属负载量、催化乙烯齐聚活性和C8烯烃的选择性均高于氨基化改性纳米二氧化硅负载镍(化合物E);且化合物G经3次回收循环使用后,催化乙烯齐聚活性为3.12×105 g/(mol Ni·h),齐...  相似文献   

8.
核壳结构镍的制备及催化性能   总被引:2,自引:0,他引:2  
利用软化学方法制备出了聚苯乙烯(PS)/镍核壳结构和纳米镍催化剂, 并利用SEM和XRD对材料的形貌和结构进行了表征. 将上述催化剂应用于亚甲基蓝染料加氢反应, 一步实现染料褪色和硼氢化钠水解制氢. 研究表明, 核壳结构极大地提高了镍的催化能力. 在相同条件下, 核壳结构镍的加氢催化效率是纳米镍的1.42倍, 产氢效率是纳米镍的4.76倍, 这说明核壳结构在催化领域具有一定的优势.  相似文献   

9.
以纳米碳纤维(CNFs)为基体材料,采用化学镀法在CNFs表面沉积了Ni-Co-P催化剂。研究了催化剂用量,硼氢化钠、氢氧化钠浓度,温度等对碱性硼氢化钠溶液水解释氢的影响。电感耦合等离子体原子发射光谱法(ICP-AES)测试得出负载型Ni-Co-P催化剂含镍13.30%(质量分数,下同)、钴82.25%、磷4.45%。硼氢化钠水解释氢实验结果表明,产氢速率与催化剂用量呈线性关系。当温度为45 ℃、催化剂浓度为7.5 g/L、氢氧化钠浓度为5%、硼氢化钠浓度为2.5%时,氢气释放速率达到最大值18.044 L/(g·min)。通过对负载型催化剂Ni-Co-P/CNFs催化碱性硼氢化钠溶液释放氢气动力学研究表明,该催化剂的活化能Ea为51.57 kJ/mol。  相似文献   

10.
以TiO2为载体,N iB为诱导剂,粉末化学镀法制备了负载型纳米N i催化剂.通过TEM、HRTEM、XRD和ICP技术对催化剂物性进行了表征.结果表明,碱性镀液可使载体表面均匀负载微晶结构纳米N i团簇,尺度为35nm左右.该负载型纳米N i在对氯硝基苯选择加氢反应中表现出很高催化加氢活性,并能有效抑制脱氯,达到了工业骨架镍水平.由酸性镀液得到的负载型非晶态纳米N i-P合金具有较弱的催化对氯硝基苯加氢活性.反应温度对反应时间和脱氯率有明显影响.  相似文献   

11.
The electronic and IR-spectra of nickel hydroxocarbonate are investigated. Since the solid substance is amorphous these studies are the only source of information about the bonding mode of the hydroxo- and carbonate groups in it. The spectra of the hydroxocarbonate were compared with the spectra of the nickel hydroxide and the nickel carbonate-hexahydrate. Correlation analysis of the vibrational spectra was made. It was proved that the solid nickel hydroxocarbonate contains molecular groups which differ from those in solid nickel hydroxide and nickel carbonate and that hydroxocarbonate is an individual chemical compound whose structure is similar to the structure of nickel hydroxide and nickel carbonate-hexahydrate.  相似文献   

12.
Carbonylation refining technology has been used to extract nickel from nickel alloy. Before carbonylation, roasting and size reduction is used as a pre-treatment method, and re-activation with H2 is needed. During carbonylation, the addition of H2S helps to activate the nickel surface and improve the extraction rate. The supply of H2S does not necessarily need to be continuous. The optimum parameters for extraction of nickel are a carbonylation temperature of 70 °C, pressure of 10 bar, flow rate of 0.25–0.35 L/min and mixture of CO and H2S as carbonylation agent. The best extraction rate of nickel can reach 99%.  相似文献   

13.
The density of liquid NiCl2 and Ni + NiCl2 liquid mixtures has been determined at 1323 K by the γ-ray absorption method, described previously. This method has been used for the first time in the measurement of the absolute density of a molten salt. The excess molar volume of the Ni + NiCl2 mixtures is zero within the accuracy of the measurement.  相似文献   

14.
Electroless cobalt plating on spherical nickel hydroxide is tested in order to improve the conductivity of Ni(OH)2 and the capacity of the electrode. The factors affecting the process of electroless cobalt plating are cobalt solution, temperature and pH, etc. The effects have been examined and the optimum process parameters have been obtained. The nickel hydroxide electrode which is made by nickel hydroxide deposited cobalt has excellent performance, the results showing that electroless cobalt plating on the surface of spherical nickel hydroxide particles is an effective method for modifying electrodes.  相似文献   

15.
16.
The present review is devoted to the chemistry of trimethylacetate NiII complexes with various nitrogen-containing ligands. Pathways of formation of complexes containing the Ni2(μ-OH2)(μ-OOCCMe3)2 and Ni2(μ-OOCCMe3)4 fragments are discussed. Pathways of degradation of the nine-nuclear complex Ni9(HOOCCMe3)44-OH)33-OH)3)34-OOCCMe3)12 under the action of primary amines (aniline or propargylamine) as well as the process of dehydration ofN-phenyl-o-phenylenediamine up to the bischelate mononuclear complex [1,2-(NH)(NPh)C6H4]2Ni are demonstrated. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 409–419, March, 1999.  相似文献   

17.
Nanocrystalline Ni(OH)2 powder synthesized by a chemical precipitation method was processed using the planetary ball milling (PBM), and the physical properties of both the ball-milled and unmilled Ni(OH)2 were characterized by scanning electron microscopy (SEM), specific surface area, particle size distribution, and X-ray diffraction. It was found that the PBM processing could significantly break up the agglomeration, uniformize the particle size distribution, increase the surface area, decrease the crystallite size, and reduce the crystallinity of nanocrystalline β-Ni(OH)2, which were advantageous to the improvement of the electrochemical activity of Ni(OH)2. The ball-milled nanocrystalline (BMN) Ni(OH)2 was then used to alter the microstructure of pasted nickel electrodes and improve the distribution of the active material in the porous electrode substrate. Electrochemical performances of pasted nickel electrodes with a mixture of BMN and spherical Ni(OH)2 as the active material were investigated, and were compared with those of pure spherical Ni(OH)2 electrodes. Charge/discharge tests showed that BMN Ni(OH)2 addition could enhance the charging efficiency, specific discharge capacity, discharge voltage, and high-rate capability of pasted nickel electrodes. This performance improvement could be attributed to a more compact electrode microstructure, better reaction reversibility, and lower electrochemical impedance, as indicated by SEM, cyclic voltammetry, and electrochemical impedance spectroscopy. Thus, it was an effective method to modify the microstructure and improve the electrochemical properties of pasted nickel electrodes by adding an appropriate amount of BMN Ni(OH)2 to spherical Ni(OH)2 as the active material.  相似文献   

18.
Summary The complexes [Ni(en)3]MoS4, [Ni(dien)2]MoS4 and [Ni(phen)2(MoS4)]·2H2O (en = ethylenediamine, dien = diethylenetriamine, phen = 1,10-phenanthroline) were prepared. On the basis of their magnetochemical and spectral properties the compounds can be characterized as octahedral nickel(II) complexes. The complexes were also studied by c.v. Chemical oxidation of [Ni(en)3]MoS4 affords [Ni(en)MoS4]2SO4; this complex has been characterized by i.r. and e.p.r. spectroscopy and by magnetic measurements.  相似文献   

19.
[ Ni(dtc)2] (dtc = N-(pyrrole-2-ylmethyl)-N-thiophenemethyldithiocarbamate ( 1 ), N-methylferrocenyl-N-(2-phenylethyl)dithiocarbamate ( 2 ), N-furfuryl-N-methylferrocenyldithiocarbamate ( 3 ), and (N-[pyrrole-2-ylmethyl]-N-thiophenemethyldithiocarbamato-S,S′)(thiocyanato-N)(triphenylphosphine)nickel(II) ( 4 ) complexes were prepared and characterized by elemental analysis, infrared, ultraviolet–visible, and nuclear magnetic resonance (1H and 13C) spectroscopies. The data were consistent with the formation of square planar nickel(II) complexes, which was confirmed by single-crystal X-ray diffraction studies on 2 and 4 . Fe···Fe interactions exhibited by complex 2 led to supramolecular aggregation. The structure of 4 reveals intermolecular and intramolecular C-H···Ni anagostic interactions. The anion-sensing properties of 2 were studied with halide ions by cyclic voltammetry. It was observed that 2 acts as sensor for bromide. Complexes 1 , 2 , and 3 , were utilized to prepare nickel sulfide, nickel–iron sulfide-1, and nickel–iron sulfide-2, respectively. The composition, structure, morphology, and optical properties of nickel sulfide and nickel–iron sulfides were examined using powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, ultraviolet–visible, fluorescence, and infrared spectroscopy. Powder X-ray diffraction patterns of nickel sulfide, nickel–iron sulfide-1, and nickel–iron sulfide-2 indicate the formation of orthorhombic Ni9S8, cubic NiFeS2, and cubic Ni2FeS4, respectively. The photocatalytic activities of as-prepared nickel sulfide and nickel–iron sulfide-1 nanoparticles were investigated for photodegradation of methylene blue and rhodamine-B under ultraviolet irradiation. Nickel–iron sulfide-1 nanoparticles show slightly higher photodegradation efficiency compared with the nickel sulfide nanoparticles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号