首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Anatase nanocrystals of 5 to 10 nm in diameter were formed in the silica-titania films by treatment with hot water. The formation of nanocrystals with hot water treatment was a unique phenomenon to the silica-titania system and the addition of organic polymers such as PEG was indispensable for the high dispersion of anatase nanocrystals in the films. The hydrolysis of Si—O—Ti bonds with hot water was considered to play an important role for the formation of anatase nanocrystals. The resultant films were transparent even after the formation of anatase nanocrystals. Acetaldehyde was photocatalytically decomposed into CO2 on the films which were subjected to a hot water treatment. The amounts of generated CO2 were twice of that of introduced acetaldehyde, indicating that the total acetaldehyde was completely decomposed to CO2. Anatase nanocrystals-dispersed films can be formed on various kinds of substrates including those with poor heat resistance such as organic polymers and organisms by this process, so that the substrates coated with the films are expected to be widely used for photocatalytic applications.  相似文献   

2.
A process to prepare nanocrystals-dispersed thin films at low temperatures using a hot water treatment of the gel films, and application of these nanocomposite thin films were demonstrated. When amorphous Al2O3 gel films were immersed in a hot water, we found that boehmite nanocrystals were formed on the surface of the films. In the hot water treatment of Al2O3-ZnO amorphous films, Zn-Al layered double hydroxide (LDH) was found to be formed on the films. When the SiO2-TiO2 gel films containing poly(ethylene glycol) were treated in a hot water, anatase nanocrystals were formed on the surface and inside of the films, and for the gel films without an organic polymer, the anatase nanocrystals were formed only on the surface of the films. In the hot water treatment of SiO2-TiO2 gel films under a vibration, titania nanosheets were found to be precipitated, instead of anatase nanocrysltals. Since formation of nanocrystals on the substrates using a hot water treatment is very mild conditions as the precipitation of crystals, we believe this process will open new application fields of nanocystals-dispersed thin films.  相似文献   

3.
Ethanol, n-butanol, mixed ethanol/terpineol and ethanol/1-decanol were used as the solvents to prepare porous TiO2 films by the sol-gel method from the system containing tetrabutylorthotitanate as starting material and PEG as a template. The comparison of effects of the four solvents on the porous structure, film thickness, crystallization behavior from amorphous to anatase and optical properties of the resultant TiO2 porous films are discussed. The maximum thickness of the film prepared by one-run dip-coating reaches over 1.17 μm when 1-decanol is used as the solvent. The mechanism for formation of the porous structure is interpreted based on the phase separation and self-assembly of PEG in the sol systems.  相似文献   

4.
Porous nanocrystalline TiO2 anatase thin films have been synthesized on glass substrates via a sol-gel dip-coating method. The coating sol was obtained by suppressed hydrolysis of Ti(OC4H9)4 through the addition of complexing molecules as stabilizers in an alcohol solution containing polyethylene glycol (PEG). Chemical changes taking place during the sol-gel process were discussed based on IR spectra analysis. A model concerning the pore formation was established to explain the role of PEG and solvent with core-shell configuration as double-templates. The structural characteristics of porous TiO2 films were found to greatly depend on the concentration and molecular weight of PEG, the types of stabilizing agents and solvents. The pore size of the films was tunable in the range of 10–500 nm and their surface area varied from 51 to 72 m2·g–1.  相似文献   

5.
Anatase nanocrystals were precipitated mainly at the surface of the silica-titania gel films with hot water treatment, whereas the addition of poly(ethylene glycol) (PEG) in the films led to the dispersion of anatase nanocrystals in the whole of the films after the treatment. Both films with and without PEG showed high photocatalytic activities for acetaldehyde, NO x and stearic acid in the gas-solid system, and for methylene blue and potassium iodide in the liquid-solid system. The addition of PEG improved the photocatalytic activities of the resultant films due to the smaller anatase crystallites and the porous film structure. The residual silica under-layer of the superficially anatase-precipitated films is expected to act as a protective one for an organic polymer substrate against the photocatalytic degradation.  相似文献   

6.
Many types of TiO2-SiO2 (Ti:Si=50:50 mol%) were prepared by the sol-gel procedure with and without 2-methyl-2, 4-pentanediol (MPD) as an organic ligand. The effect of MPD on the gel structure and the properties of the TiO2 crystals were studied by XRD and raman spectroscopy, and the effect of the sol standing time on the properties of the TiO2 crystals were also studied by XRD spectroscopy. In the gels with MPD, anatase of TiO2 appeared at approximately 580°C, and the crystal structures were similar despite the difference in the gel preparation procedure. The titania gels with MPD were presumed to be dispersed in the silica gel matrix without any Ti-O-Si bond. In the presence of MPD, the formation of titania gels is controlled and the specified TiO2 crystal is produced.  相似文献   

7.
Porous nanocrystalline TiO2 films have been prepared on cp-Ti substrates for biomedical usage by a sol–gel process from the solutions containing polyethylene glycol (PEG) as a template. Variations of the crystal structure with heat-treatment temperature determined by XRD are different for TiO2 films and powders, due to the effect of titanium substrate. The surface texture of porous TiO2 films is analyzed by means of SEM and found to greatly depend on the concentration and molecular weight of PEG. The pore formation mechanism is discussed in relation to the self-assembly of PEG and phase separation between PEG adsorbed on TiO2 oligomers and ethanol.  相似文献   

8.
In this paper, we developed low molecular weight gel system based on cholesterol derivative containing pyridine unit attached through β-alanine linkage, which can act as efficient gelator to form novel gel systems in organic or organic–water solvents. Spherical nanoscale anatase–TiO2 with porous structure was obtained through the in situ hydrolysis in the gel tissue upon the instant addition of water followed by calcination, which had photo catalytic activity toward naphthol blue black. To the best of our knowledge, this is the first example that cholesterol-based gel tissue was employed as the template to construct TiO2 with photo-catalytic activity.  相似文献   

9.
Structural changes in SiO2 and TiO2 gel films were investigated using ultraviolet (UV) and vacuum ultraviolet (VUV) irradiations. A significant compaction with dehydration of SiO2 gel films was induced by irradiation of photons in the range of 9–18 eV. The refractive index and the shrinkage of the irradiated SiO2 gel films were comparable to those obtained by sintering at 1000°C. Densification of TiO2 gel films was also observed with irradiation of 5–14 eV photons. However, effects of the irradiation on TiO2 gel were smaller that those on SiO2 gel. The structural changes in the gel films are attributed to electronic excitations which are induced by irradiation with photons having higher energies than the bandgap of the oxides. The photo-induced effects are presumed to depend on the optical properties and structure of the gels.  相似文献   

10.
TiO2 films with a thickness of 75 ± 5 nm (anatase) were formed on SnO2-film (580 ± 80 nm) coated soda-lime glass substrates (SnO2/SL-glass) by a sol-gel method. Although the photocatalytic activity for CH3CHO oxidation (ex > 300 nm) significantly exceeded that of a standard TiO2/quartz sample, it decayed with illumination time (t) at t > 0.75 h. Stripes of anatase TiO2 films of 40 nm in thickness and 1 mm in width were prepared on the SnO2/SL-glass substrate in a 1-mm pitch by photolysis of an organically modified sol-gel film. The TiO2 patterning further increased the photocatalytic activity by a factor of 4.1 as compared to the non-patterned sample, and it was also maintained at 0 < t < 2 h. The flat band potentials of the TiO2 and SnO2 films are determined to be –0.34 and +0.07 V (vs. SHE), respectively, at pH = 7 by the Mott-Schottky plots. On the basis of the results, the outstanding patterning effects could be rationalized in terms of the vectorial charge separation at the interface between TiO2 and SnO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号