首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The Markovian assumption stating that memory effects can be neglected is a crucial assumption in the theory of coarse-graining. We investigate the coarse-graining of a one-dimensional chain of oscillators where the atoms are grouped into clusters or blobs. When the interaction between oscillators is through Hookean springs, the cluster dynamics is non-Markovian, as has been recently noted by Cubero and Yaliraki [J. Chem. Phys. 122, 03418 (2005)]. When the oscillators interact through a nonlinear potential of the Lennard-Jones type, the dynamics turns out to be Markovian. The different behavior in both types of interactions is attributed to the persistence of sound waves in the harmonic case, which are strongly suppressed in the nonlinear case.  相似文献   

2.
A recently developed multiscale coarse-graining (MS-CG) approach for obtaining coarse-grained force fields from fully atomistic molecular dynamics simulation is applied to the challenging case of the EMIM+NO3- ionic liquid. The force-matching in the MS-CG methodology is accomplished with an explicit separation of bonded and nonbonded forces. While the nonbonded forces are adopted from this force-matching approach, the bonded forces are obtained from fitting the statistical configurational data from the atomistic simulations. The many-body electronic polarizability is also successfully broken into effective pair interactions. With a virial constraint fixing the system pressure, the MS-CG models rebuild satisfactory structural and thermodynamic properties for different temperatures. The MS-CG model developed from a modest atomistic simulation is therefore suitable for simulating much larger systems, because the coarse-grained models show significant time integration efficiency. This approach is expected to be general for coarse-graining other ionic liquids, as well as many other liquid-state systems. The limitations of the present coarse-graining procedure are also discussed.  相似文献   

3.
The coarse-graining of a simple all-atom 2D microscopic model of graphene, in terms of "blobs" described by center of mass variables, is presented. The equations of motion of the coarse-grained variables take the form of dissipative particle dynamics (DPD). The coarse-grained conservative forces and the friction of the DPD model are obtained via a bottom-up procedure from molecular dynamics (MD) simulations. The separation of timescales for blobs of 24 and 96 carbon atoms is sufficiently pronounced for the Markovian assumption, inherent to the DPD model, to provide satisfactory results. In particular, the MD velocity autocorrelation function of the blobs is well reproduced by the DPD model, provided that the effect of friction and noise is taken into account. However, DPD cross-correlations between neighbor blobs show appreciable discrepancies with respect to the MD results. Possible extensions to mend these discrepancies are briefly outlined.  相似文献   

4.
We present a coarse-grained model for linear polymers with a tunable number of effective atoms (blobs) per chain interacting by intra- and intermolecular potentials obtained at zero density. We show how this model is able to accurately reproduce the universal properties of the underlying solution of athermal linear chains at various levels of coarse-graining and in a range of chain densities which can be widened by increasing the spatial resolution of the multiblob representation, i.e., the number of blobs per chain. The present model is unique in its ability to quantitatively predict thermodynamic and large scale structural properties of polymer solutions deep in the semidilute regime with a very limited computational effort, overcoming most of the problems related to the simulations of semidilute polymer solutions in good solvent conditions.  相似文献   

5.
We present a modeling technique that combines a statistical-mechanical coarse-graining scheme with a nonequilibrium molecular simulation algorithm to provide an efficient simulation of steady-state permeation across a microporous material. The coarse-graining scheme is based on the mapping of an atomistic model to a lattice using multidimensional free-energy and transition-state calculations. The nonequilibrium simulation algorithm is a stochastic, lattice version of the recently developed atomistic dual-control-volume grand canonical molecular dynamics. We demonstrate the approach on a model of methane permeating through a bulk portion of siliceous zeolite ZK4 at 300 K under imposed fugacity differences. We predict the coarse-grained (cage-level) density profiles and observe the development of nonlinearities as the magnitude of the fugacity difference is increased. From the net flux of methane we also predict a mean permeability coefficient under the various conditions. The simulation results are obtained over time scales on the order of microseconds and length scales on the order of dozens of nanometers.  相似文献   

6.
We introduce a multiscale framework to simulate inhomogeneous fluids by coarse-graining an all-atom molecular dynamics (MD) trajectory onto sequential snapshots of hydrodynamic fields. We show that the field representation of an atomistic trajectory is quantitatively described by a dynamic field-theoretic model that couples hydrodynamic fluctuations with a Ginzburg-Landau free energy. For liquid-vapor interfaces of argon and water, the parameters of the field model can be adjusted to reproduce the bulk compressibility and surface tension calculated from the positions and forces of atoms in an MD simulation. These optimized parameters also enable the field model to reproduce the static and dynamic capillary wave spectra calculated from atomistic coordinates at the liquid-vapor interface. In addition, we show that a density-dependent gradient coefficient in the Ginzburg-Landau free energy enables bulk and interfacial fluctuations to be controlled separately. For water, this additional degree of freedom is necessary to capture both the bulk compressibility and surface tension emergent from the atomistic trajectory. The proposed multiscale framework illustrates that bottom-up coarse-graining and top-down phenomenology can be integrated with quantitative consistency to simulate the interfacial fluctuations in nanoscale transport processes.  相似文献   

7.
8.
A coarse-grained model has been developed for simulating the self-assembly of nonyl-tethered polyhedral oligomeric silsesquioxane (POSS) nanoparticles in solution. A mapping scheme for groups of atoms in the atomistic molecule onto beads in the coarse-grained model was established. The coarse-grained force field consists of solvent-mediated effective interaction potentials that were derived via a structural-based coarse-graining numerical iteration scheme. The force field was obtained from initial guesses that were refined through two different iteration algorithms. The coarse-graining scheme was validated by comparing the aggregation of POSS molecules observed in simulations of the coarse-grained model to that observed in all-atom simulations containing explicit solvent. At 300 K the effective coarse-grained potentials obtained from different initial guesses are comparable to each other. At 400 K the differences between the force fields obtained from different initial guesses, although small, are noticeable. The use of a different iteration algorithm employing identical initial guesses resulted in the same overall effective potentials for bare cube corner bead sites. In both the coarse-grained and all-atom simulations, small aggregates of POSS molecules were observed with similar local packings of the silsesquioxane cages and tether conformations. The coarse-grained model afforded a savings in computing time of roughly two orders of magnitude. Further comparisons were made between the coarse-grained monotethered POSS model developed here and a minimal model developed in earlier work. The results suggest that the interactions between POSS cages are long ranged and are captured by the coarse-grained model developed here. The minimal model is suitable for capturing the local intermolecular packing of POSS cubes at short separation distances.  相似文献   

9.
A key question for all coarse-graining methodologies is the degree of transferability of the resulting force field between various systems and thermodynamic conditions. Here we present a detailed study of the transferability over different thermodynamic states of a coarse-grained (CG) force field developed using the iterative Boltzmann inversion method. The force field is optimized against distribution functions obtained from atomistic simulations. We analyze the polymer case by investigating the bulk of polystyrene and polyamide-6,6 whose coarse-grained models differ in the chain length and in the number of atoms lumped in one bead. The effect of temperature and pressure on static, dynamic, and thermodynamic properties is tested by comparing systematically the coarse-grain results with the atomistic ones. We find that the CG model describing the polystyrene is transferable only in a narrow range of temperature and it fails in describing the change of the bulk density when temperature is 80 K lower than the optimization one. Moreover the calculation of the self-diffusion coefficient shows that the CG model is characterized by a faster dynamics than the atomistic one and that it overestimates the isothermal compressibility. On the contrary, the polyamide-6,6 CG model turns out to be fully transferable between different thermodynamic conditions. The transferability is checked by changing either the temperature or the pressure of the simulation. We find that, in this case, the CG model is able to follow all the intra- and interstructural rearrangements caused by the temperature changes. In addition, while at low temperature the difference between the CG and atomistic dynamics is remarkable due to the presence of hydrogen bonds in the atomistic systems, for high temperatures, the speedup of the CG dynamics is strongly reduced, leading to a CG diffusion coefficient only six times bigger than the atomistic one. Moreover, the isothermal compressibility calculated at different temperatures agrees very well with the experimental one. We find that the polymer chain length does not affect the transferability of the force field and we attribute such transferability mainly to the finer model used in describing the polyamide-6,6 than the polystyrene.  相似文献   

10.
11.
Highly branched polymers such as polyamidoamine (PAMAM) dendrimers are promising macromolecules in the realm of nanobiotechnology due to their high surface coverage of tunable functional groups. Modeling efforts of PAMAM can provide structural and morphological properties, but the inclusion of solvents and the exponential growth of atoms with generations make atomistic simulations computationally expensive. We apply an implicit solvent coarse‐grained model, called the Dry Martini force field, to PAMAM dendrimers. The reduced number of particles and the absence of a solvent allow the capture of longer spatiotemporal scales. This study characterizes PAMAM dendrimers of generations one through seven in acidic, neutral, and basic pH environments. Comparison with existing literature, both experimental and theoretical, is done using measurements of the radius of gyration, moment of inertia, radial distributions, and scaling exponents. Additionally, ion coordination distributions are studied to provide insight into the effects of interior and exterior protonation on counter ions. This model serves as a starting point for future designs of larger functionalized dendrimers. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
A systematic multiscale coarse-graining (MS-CG) algorithm is applied to build coarse-grained models for monosaccharides in aqueous solution. The methodology is demonstrated for the example of alpha-D-glucopyranose. The nonbonded interactions are directly derived from the force-matching approach, whereas the bonded interactions are obtained through Boltzmann statistical analyses of the underlying atomistic trajectory. The MS-CG model is shown to reproduce many structural and thermodynamic properties in the constant NPT ensemble. Although the model is derived at a single temperature, pressure, and concentration, it is shown to be reasonably transferable to other thermodynamic states. In this model, long-range interactions are effectively mapped into short-range forces with a moderate cutoff and are evaluated by table look-up. As a result, molecular dynamics employing the MS-CG model is approximately 3 orders of magnitude more efficient than its atomistic counterpart. Consequently, the model is particularly suitable for simulating carbohydrate systems at large length and long time scales. Results for an alpha-(1-->4)-d-glucan with 14 glucose units are also presented, demonstrating that the MS-CG algorithm is also applicable to the coarse-graining of other saccharide systems.  相似文献   

13.
Typically, the most time consuming part of any atomistic molecular simulation is the repeated calculation of distances, energies, and forces between pairs of atoms. However, many molecules contain nearly rigid multi-atom groups such as rings and other conjugated moieties, whose rigidity can be exploited to significantly speed-up computations. The availability of GB-scale random-access memory (RAM) offers the possibility of tabulation (precalculation) of distance- and orientation-dependent interactions among such rigid molecular bodies. Here, we perform an investigation of this energy tabulation approach for a fluid of atomistic-but rigid-benzene molecules at standard temperature and density. In particular, using O(1) GB of RAM, we construct an energy look-up table, which encompasses the full range of allowed relative positions and orientations between a pair of whole molecules. We obtain a hardware-dependent speed-up of a factor of 24-50 as compared to an ordinary ("exact") Monte Carlo simulation and find excellent agreement between energetic and structural properties. Second, we examine the somewhat reduced fidelity of results obtained using energy tables based on much less memory use. Third, the energy table serves as a convenient platform to explore potential energy smoothing techniques, akin to coarse-graining. Simulations with smoothed tables exhibit near atomistic accuracy while increasing diffusivity. The combined speed-up in sampling from tabulation and smoothing exceeds a factor of 100. For future applications, greater speed-ups can be expected for larger rigid groups, such as those found in biomolecules.  相似文献   

14.
15.
A mesoscopic model of poly(lactic acid) is developed where the polymer is represented as an A‐graft‐B chain with monomer units consisting of two covalently connected beads. A coarse‐graining algorithm is proposed to convert an atomistic model of PLA into a coarse‐grained one. The developed model is based on atomistic simulations of oligolactides to take into account terminal groups correctly. It was used for coarse‐grained simulations of polylactide. Gyration radii and end to end distances of polymer chains as well as the density of the polymer melt are shown to be in a good agreement with those obtained from atomistic simulations. The thermal expansion coefficients of the OLA melts calculated using the coarse‐grained model are in reasonable agreement with those obtained from all‐atom molecular dynamics. The model provides a 17‐fold speedup compared with atomistic calculations. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 604–612  相似文献   

16.
The potential of mean force (PMF) with respect to coarse-grained (CG) coordinates is often calculated in order to study the molecular interactions in atomistic molecular dynamics (MD) simulations. The multiscale coarse-graining (MS-CG) approach enables the computation of the many-body PMF of an atomistic system in terms of the CG coordinates, which can be used to parameterize CG models based on all-atom configurations. We demonstrate here that the MS-CG method can also be used to analyze the CG interactions from atomistic MD trajectories via PMF calculations. In addition, MS-CG calculations at different temperatures are performed to decompose the PMF values into energetic and entropic contributions as a function of the CG coordinates, which provides more thermodynamic information regarding the atomistic system. Two numerical examples, liquid methanol and a dimyristoylphosphatidylcholine lipid bilayer, are presented. The results show that MS-CG can be used as an analysis tool, comparable to various free energy computation methods. The differences between the MS-CG approach and other PMF calculation methods, as well as the characteristics and advantages of MS-CG, are also discussed.  相似文献   

17.
The recently developed multiscale coarse-graining (MS-CG) method (Izvekov, S.; Voth, G. A. J. Phys. Chem. B 2005, 109, 2469; J. Chem. Phys. 2005, 123, 134105) is used to build a mixed all-atom and coarse-grained (AA-CG) model of the gramicidin A (gA) ion channel embedded in a dimyristoylphosphatidylcholine (DMPC) lipid bilayer and water environment. In this model, the gA peptide was described in full atomistic detail, while the lipid and water molecules were described using coarse-grained representations. The atom-CG and CG-CG interactions in the mixed AA-CG model were determined using the MS-CG method. Molecular dynamics (MD) simulations were performed using the resulting AA-CG model. The results from simulations of the AA-CG model compare very favorably to those from all-atom MD simulations of the entire system. Since the MS-CG method employs a general and systematic approach to obtain effective interactions from the underlying all-atom models, the present approach to rigorously develop mixed AA-CG models has the potential to be extended to many other systems.  相似文献   

18.
IBIsCO is a parallel molecular dynamics simulation package developed specially for coarse-grained simulations with numerical potentials derived by the iterative Boltzmann inversion (IBI) method (Reith et al., J Comput Chem 2003, 24, 1624). In addition to common features of molecular dynamics programs, the techniques of dissipative particle dynamics (Groot and Warren, J Chem Phys 1997, 107, 4423) and Lowe-Andersen dynamics (Lowe, Europhys Lett 1999, 47, 145) are implemented, which can be used both as thermostats and as sources of friction to compensate the loss of degrees of freedom by coarse-graining. The reverse nonequilibrium molecular dynamics simulation method (Müller-Plathe, Phys Rev E 1999, 59, 4894) for the calculation of viscosities is also implemented. Details of the algorithms, functionalities, implementation, user interfaces, and file formats are described. The code is parallelized using PE_MPI on PowerPC architecture. The execution time scales satisfactorily with the number of processors.  相似文献   

19.
Structure-based coarse-graining relies on matching the pair correlation functions of a reference (atomistic) and a coarse-grained system. As such, it is designed for systems with uniform density distributions. Here, we demonstrate how it can be generalized for inhomogeneous systems by coarse-graining slabs of liquid water and methanol in vacuum, as well as a single benzene molecule at the water-vacuum interface. Our conclusion is that coarse-graining performed in inhomogeneous systems improves thermodynamic properties and the structure of interfaces without significant alterations to the local structure of the bulk liquid.  相似文献   

20.
Reduced-dimensionality, coarse-grained models are commonly employed to describe the structure and dynamics of large molecular systems. In those models, the dynamics is often described by Langevin equations of motion with phenomenological parameters. This paper presents a rigorous coarse-graining method for the dynamics of linear systems. In this method, as usual, the conformational space of the original atomistic system is divided into master and slave degrees of freedom. Under the assumption that the characteristic timescales of the masters are slower than those of the slaves, the method results in Langevin-type equations of motion governed by an effective potential of mean force. In addition, coarse-graining introduces hydrodynamic-like coupling among the masters as well as non-trivial inertial effects. Application of our method to the long-timescale part of the relaxation spectra of proteins shows that such dynamic coupling is essential for reproducing their relaxation rates and modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号