首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fusarium graminearum is widely studied as a model for toxin production among plant pathogenic fungi. A 2D DIGE reference map for the nivalenol‐producing strain 453 was established. Based on a whole protein extract, all reproducible spots were systematically picked and analyzed by MALDI‐TOF/TOF, leading to the identification of 1102 protein species. The obtained map contributes to the annotation of the genome by identifying previously nondescribed hypothetical proteins and will serve as a reference for future studies aiming at deciphering F. graminearum biology and chemotype diversity.  相似文献   

2.
Palm oil is an edible vegetable oil derived from lipid‐rich fleshy mesocarp tissue of oil palm (Elaeis guineensis Jacq.) fruit and is of global economic and nutritional relevance. While the understanding of oil biosynthesis in plants is improving, the fundamentals of oil biosynthesis in oil palm still require further investigations. To gain insight into the systemic mechanisms that govern oil synthesis during oil palm fruit ripening, the proteomics approach combining gel‐based electrophoresis and mass spectrometry was used to profile protein changes and classify the patterns of protein accumulation during these complex physiological processes. Protein profiles from different stages of fruit ripening at 10, 12, 14, 15, 16, 18 and 20 weeks after anthesis (WAA) were analysed by two‐dimensional gel electrophoresis (2DE). The proteome data were then visualised using a multivariate statistical analysis of principal component analysis (PCA) to get an overview of the proteome changes during the development of oil palm mesocarp. A total of 68 differentially expressed protein spots were successfully identified by matrix‐assisted laser desorption/ionisation‐time of flight (MALDI‐TOF/TOF) and functionally classified using ontology analysis. Proteins related to lipid production, energy, secondary metabolites and amino acid metabolism are the most significantly changed proteins during fruit development representing potential candidates for oil yield improvement endeavors. Data are available via ProteomeXchange with identifier PXD009579. This study provides important proteome information for protein regulation during oil palm fruit ripening and oil synthesis.  相似文献   

3.
A procedure for identification of malting barley varieties using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) of ethanol‐soluble barley proteins (hordeins) is described. The hordeins were first extracted from milled barley grains by several extraction protocols (using different extraction agents and conditions). Hordein extracts were then analyzed directly via MALDI‐TOF MS without any preliminary purification or separation step, and the protein profiles of analyzed hordein extracts were compared in order to find out the most suitable extraction procedure for mass spectrometric analysis. The optimized procedure was successfully applied to identification of 13 malting barley varieties. Our results revealed that the proposed mass spectrometry‐based approach provides characteristic mass patterns of extracted hordeins, which can be advantageously used for barley variety identification. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
《Electrophoresis》2017,38(8):1147-1153
Oil palm is one of the most productive oil bearing crops grown in Southeast Asia. Due to the dwindling availability of agricultural land and increasing demand for high yielding oil palm seedlings, clonal propagation is vital to the oil palm industry. Most commonly, leaf explants are used for in vitro micropropagation of oil palm and to optimize this process it is important to unravel the physiological and molecular mechanisms underlying somatic embryo production from leaves. In this study, a proteomic approach was used to determine protein abundance of mature oil palm leaves. To do this, leaf proteins were extracted using TCA/acetone precipitation protocol and separated by 2DE. A total of 191 protein spots were observed on the 2D gels and 67 of the most abundant protein spots that were consistently observed were selected for further analysis with 35 successfully identified using MALDI TOF/TOF MS. The majority of proteins were classified as being involved in photosynthesis, metabolism, cellular biogenesis, stress response, and transport. This study provides the first proteomic assessment of oil palm leaves in this important oil crop and demonstrates the successful identification of selected proteins spots using the Malaysian Palm Oil Board (MPOB) Elaeis guineensis EST and NCBI‐protein databases. The MS data have been deposited in the ProteomeXchange Consortium database with the data set identifier PXD001307.  相似文献   

5.
ProteinChip surface‐enhanced laser desorption/ionization technology and magnetic beads‐based ClinProt system are commonly used for semi‐quantitative profiling of plasma proteome in biomarker discovery. Unfortunately, the proteins/peptides detected by MS are non‐recoverable. To obtain the protein identity of a MS peak, additional time‐consuming and material‐consuming purification steps have to be done. In this study, we developed a magnetic beads‐based proteomic fingerprinting method that allowed semi‐quantitative proteomic profiling and micropreparative purification of the profiled proteins in parallel. The use of different chromatographic magnetic beads allowed us to obtain different proteomic profiles, which were comparable to those obtained by the ProteinChip surface‐enhanced laser desorption/ionization technology. Our assays were semi‐quantitative. The normalized peak intensity was proportional to concentration measured by immunoassay. Both intra‐assay and inter‐assay coefficients of variation of the normalized peak intensities were in the range of 4–30%. Our method only required 2 μL of serum or plasma for generating enough proteins for semi‐quantitative profiling by MALDI‐TOF‐MS as well as for gel electrophoresis and subsequent protein identification. The protein peaks and corresponding gel spots could be easily matched by comparing their intensities and masses. Because of its high efficiency and reproducibility, our method has great potentials in clinical research, especially in biomarker discovery.  相似文献   

6.
In a previous publication a large series of proteins were identified in fetal human brain by the use of two-dimensional electrophoresis (2-DE) with subsequent matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) and MALDI-tandem time-of-flight (TOF/TOF) analysis. Further identification of many more different spots by traditional 2-DE without additional step such as narrow immobilized ph gradient (IPG) strips or prefractionation seems unlikely and we therefore decided to separate extracted brain proteins by ion-exchange chromatography using a TSK gel DEAE-5PW column followed by 2-DE of individual fractions and analysis by MALDI-TOF/TOF with LIFT technology in fetal brain of the early second trimester. About 1880 protein spots corresponding to 543 different gene products were identified. These proteins included housekeeping, signaling, cytoskeletal, metabolic, antioxidant, and neuron/synaptosomal specific proteins. Among these, 314 gene products (314/543, 57.8%), which have never been detected in traditional 2-DE of human fetal brain, were observed by this method. This updated map of fetal brain proteins may serve as data base and reference map for fetal brain proteins, and the methodology applied may be used as a valuable analytical tool for the basis of protein expressional studies in health and disease.  相似文献   

7.
8.
9.
Embryonic stem cells (ESCs) and embryonic germ cells (EGCs) provide exciting models for understanding the underlying mechanisms that make a cell pluripotent. Indeed, such understanding would enable dedifferentiation and reprogrammation of any cell type from a patient needing a cell therapy treatment. Proteome analysis has emerged as an important technology for deciphering these biological processes and thereby ESC and EGC proteomes are increasingly studied. Nevertheless, their nuclear proteomes have only been poorly investigated up to now. In order to investigate signaling pathways potentially involved in pluripotency, proteomic analyses have been performed on mouse ESC and EGC nuclear proteins. Nuclei from ESCs and EGCs at undifferentiated stage were purified by subcellular fractionation. After 2‐D separation, a subtractive strategy (subtracting culture environment contaminating spots) was applied and a comparison of ESC, (8.5 day post coïtum (dpc))‐EGC and (11.5 dpc)‐EGC specific nuclear proteomes was performed. A total of 33 ESC, 53 (8.5 dpc)‐EGC, and 36 (11.5 dpc)‐EGC spots were identified by MALDI‐TOF‐MS and/or nano‐LC‐MS/MS. This approach led to the identification of two isoforms (with and without N‐terminal acetylation) of a known pluripotency marker, namely developmental pluripotency associated 5 (DPPA5), which has never been identified before in 2‐D gel‐MS studies of ESCs and EGCs. Furthermore, we demonstrated the efficiency of our subtracting strategy, in association with a nuclear subfractionation by the identification of a new protein (protein arginine N‐methyltransferase 7; PRMT7) behaving as proteins involved in pluripotency.  相似文献   

10.
The characteristics of matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry based investigation of extremely variable bacteria such as Helicobacter pylori were studied. H. pylori possesses a very high natural variability. Accurate tools for species identification and epidemiological characterization could help the scientific community to better understand the transmission pathways and virulence mechanisms of these bacteria. Seventeen clinical as well as two laboratory strains of H. pylori were analyzed by the MALDI Biotyper method for rapid species identification. Mass spectra collected were found containing 7–13 significant peaks per sample, and only six protein signals were identical for more than half of the strains. Four of them could be assigned to ribosomal proteins RL32, RL33, RL34, and RL36. The reproducible peak with m/z 6948 was identified as a histidine‐rich metal‐binding polypeptide by tandem mass spectrometry (MS/MS). In spite of the evident protein heterogeneity of H. pylori the mass spectra collected for a particular strain under several cultivations were highly reproducible. Moreover, all clinical strains were perfectly identified as H. pylori species through comparative analysis using the MALDI Biotyper software (Bruker Daltonics, Germany) by pattern matching against a database containing mass spectra from different microbial strains (n = 3287) including H. pylori 26695 and J99. The results of this study allow the conclusion that the MALDI‐TOF direct bacterial profiling is suited for H. pylori identification and could be supported by mass spectra fragmentation of the observed polypeptide if necessary. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Yang Y  Thannhauser TW  Li L  Zhang S 《Electrophoresis》2007,28(12):2080-2094
With 2-D gel mapping, it is often observed that essentially identical proteins migrate to different positions in the gel, while some seemingly well-resolved protein spots consist of multiple proteins. These observations can undermine the validity of gel-based comparative proteomic studies. Through a comparison of protein identifications using direct MALDI-TOF/TOF and LC-ESI-MS/MS analyses of 2-D gel separated proteins from cauliflower florets, we have developed an integrated approach to improve the accuracy and reliability of comparative 2-D electrophoresis. From 46 spots of interest, we identified 51 proteins by MALDI-TOF/TOF analysis and 108 proteins by LC-ESI-MS/MS. The results indicate that 75% of the analyzed spots contained multiple proteins. A comparison of hit rank for protein identifications showed that 37 out of 43 spots identified by MALDI matched the top-ranked hit from the ESI-MS/MS. By using the exponentially modified protein abundance index (emPAI) to determine the abundance of the individual component proteins for the spots containing multiple proteins, we found that the top-hit proteins from 40 out of 43 spots identified by MALDI matched the most abundant proteins determined by LC-MS/MS. Furthermore, our 2-D-GeLC-MS/MS results show that the top-hit proteins in 44 identified spots contributed on average 81% of the spots' staining intensity. This is the first quantitative measurement of the average rate of false assignment for direct MALDI analysis of 2-D gel spots using a new integrated workflow (2-D gel imaging, "2-D GeLC-MS/MS", and emPAI analysis). Here, the new approach is proposed as an alternative to traditional gel-based quantitative proteomics studies.  相似文献   

12.
《Electrophoresis》2018,39(7):965-980
Two‐dimensional gel electrophoresis (2DE) in proteomics is traditionally assumed to contain only one or two proteins in each 2DE spot. However, 2DE resolution is being complemented by the rapid development of high sensitivity mass spectrometers. Here we compared MALDI‐MS, LC‐Q‐TOF MS and LC‐Orbitrap Velos MS for the identification of proteins within one spot. With LC‐Orbitrap Velos MS each Coomassie Blue‐stained 2DE spot contained an average of at least 42 and 63 proteins/spot in an analysis of a human glioblastoma proteome and a human pituitary adenoma proteome, respectively, if a single gel spot was analyzed. If a pool of three matched gel spots was analyzed this number further increased up to an average of 230 and 118 proteins/spot for glioblastoma and pituitary adenoma proteome, respectively. Multiple proteins per spot confirm the necessity of isotopic labeling in large‐scale quantification of different protein species in a proteome. Furthermore, a protein abundance analysis revealed that most of the identified proteins in each analyzed 2DE spot were low‐abundance proteins. Many proteins were present in several of the analyzed spots showing the ability of 2DE‐MS to separate at the protein species level. Therefore, 2DE coupled with high‐sensitivity LC‐MS has a clearly higher sensitivity as expected until now to detect, identify and quantify low abundance proteins in a complex human proteome with an estimated resolution of about 500 000 protein species. This clearly exceeds the resolution power of bottom‐up LC‐MS investigations.  相似文献   

13.
Bacteriophage (phage) proteins have been analyzed previously with matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). However, analysis of phage major capsid proteins (MCPs) has been limited by the ability to reproducibly generate ions from MCP monomers. While the acidic conditions of MALDI‐TOF MS sample preparation have been shown to aid in disassembly of some phage capsids, many require further treatment to successfully liberate MCP monomers. The findings presented here suggest that β‐mercaptoethanol reduction of the disulfide bonds linking phage MCPs prior to mass spectrometric analysis results in significantly increased MALDI‐TOF MS sensitivity and reproducibility of Yersinia pestis‐specific phage protein profiles. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
15.
K Ou  T K Seow  R C Liang  S E Ong  M C Chung 《Electrophoresis》2001,22(13):2804-2811
Recently, we reported the proteome analysis of a human hepatocellular carcinoma cell line, HCC-M (Electrophoresis 2000, 21, 1787-1813), using two-dimensional gel electrophoresis (2-DE) and matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). From a total of 408 unique spots excised from the 2-DE gel, 301 spots yielded good MALDI spectra. Out of these, 272 spots had matches returned from the database search leading to the identification of these proteins. Here, we report the results on the identification of the remaining 29 spots using nanoelectrospray ionization-tandem mass spectrometry (nESI-MS/MS). First, "peptide tag sequencing" was performed to obtain partial amino acid sequences of the peptides to search the SWISS-PROTand NCBI nonredundant protein databases. Spots that were still not able to find any matches from the databases were subjected to de novo peptide sequencing. The tryptic peptide sequences were used to search for homologues in the protein and nucleotide databases with the NCBI Basic Local Alignment Search Tool (BLAST), which was essential for the characterization of novel or post-translationally modified proteins. Using this approach, all the 29 spots were unambiguously identified. Among them, phosphotyrosyl phosphatase activator (PTPA), RNA-binding protein regulatory subunit, replication protein A 32 kDa subunit (RP-A) and N-acetylneuraminic acid phosphate synthase were reported to be cancer-related proteins.  相似文献   

16.
The high accuracy, molecular resolution and sensitivity of matrix‐assisted laser desorption/ionisation time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) make it an efficient method for analysing all kinds of biomolecules including nucleic acids, proteins/peptides, carbohydrates and lipids. MALDI‐TOF‐MS based high‐throughput genotyping of genetic heterogeneities possesses the potential of becoming a routine method. MAL‐DI‐TOF‐MS can be used for the identification of proteins and posttranslational modifications. Taken together, MALDI‐TOF‐MS represents a integrated platform technology in bioanalytics and molecular medicine.  相似文献   

17.
The metastatic status of oral cancer is highly associated with the overall survival rate of patients. Previous studies have revealed that the endogenous tryptophan metabolite 5‐methoxytryptophan (5‐MTP) can downregulate cyclooxygenase‐2 expression; suppress tumor proliferation, migration, and invasion; and reduce the tumor size. To improve the understanding of the molecular mechanisms involved in the regulation of 5‐MTP in the tumorigenesis of oral cancer, we conducted a comparative wound healing and transwell invasion assays. Our results revealed that 5‐MTP reduce oral cancer cell migration and invasion ability. In addition, the results of an in vivo assay demonstrated that the growth of primary tumors was significantly inhibited by 5‐MTP in OC3 oral cancer cells and in invasive OC3‐I5 oral cancer cells. Moreover, enlarged spleens were observed in OC3‐I5‐implanted severe combined immunodeficiency mice although 5‐MTP can inhibit spleen enlargement. Through comparative proteomics, we identified 32 differentially regulated protein spots by using 2D‐DIGE/MALDI‐TOF MS analyses. Some of the differentially regulated proteins such as amadillo‐repeat‐containing X‐linked protein 1, phosphoglycerate kinase 1, tropomyosin alpha‐1, and tropomyosin alpha‐4 may be associated with the 5‐MTP‐dependent inhibition of oral cancer growth and metastasis. We conclude that 5‐MTP plays a crucial role in inhibiting in vitro and in vivo cancer invasion and metastasis.  相似文献   

18.
Zi J  Zhang J  Wang Q  Lin L  Tong W  Bai X  Zhao J  Chen Z  Fu X  Liu S 《Electrophoresis》2012,33(7):1129-1138
The plant embryo is the germination center of the seed. How an embryo forms during seed maturation remains unclear, especially in the case of monocotyledonous plants. Generally, the complex processes of embryogenesis result from the action of a coordinated network of genes. Thus, a large-scale survey of changes in protein abundance during embryogenesis is an effective approach to study the molecular events of embryogenesis. In this study, two-dimensional gel electrophoresis (2DE) was applied to separate rice embryo proteins collected during the three phases of embryogenesis: 6 days after pollination (DAP), 12 DAP, and 18 DAP. We then employed matrix-assisted laser desorption-ionization time of flight/time of flight mass spectrometry(MALDI TOF/TOF MS) to identify the phase-dependent differential 2DE spots. A total of 66 spots were discovered to be regulated during embryogenesis, and of these spots, 53 spots were identified. These proteins were further categorized into several functional classes, including storage, embryo development, stress response, glycolysis, and protein metabolism. Intriguingly, the major differential spots originated from three globulins. We further examined the possible mechanism underlying the globulins' multiple forms using Western blotting, proteolysis, and blue native gel electrophoresis techniques and found that the multiple forms of globulins were produced as a result of enhanced proteolysis during embryogenesis, indicating that these globulin forms may serve as chaperone proteins participating in the formation of multiple protein complexes during embryogenesis.  相似文献   

19.
Donkey's milk (DM), representing a safe and alternative food in both IgE‐mediated and non‐IgE‐mediated cow's milk protein allergy, can be categorized as precious pharma‐food. Moreover, an economically relevant interest for the use of DM in cosmetology is also developing. The detection of adulterations and contaminations of DM is a matter of fundamental importance from both an economic and allergenic standpoint, and, to this aim, fast and efficient analytical approaches to assess the authenticity of this precious nutrient are desirable. Here, a rapid matrix‐assisted laser desorption/ionization‐time‐of‐flight mass spectrometry (MALDI‐TOF MS)‐based method aimed to the detection of bovine or caprine milk in raw DM is reported. The presence of the extraneous milks was revealed by monitoring the protein profiles of the most abundant whey proteins, α‐lactalbumin (α‐LA) and β‐lactoglobulin, used as molecular markers. The possibility of obtaining a quantitative analysis of the level of cow or goat milk in DM based on the MALDI‐TOF peak areas of α‐LAs was also explored. The results showed that the experimental quantitative values were in good agreement with the real composition of each mixture. As pretreatment of the milk samples is not required, and owing to the speed and the high sensitivity of MALDI‐MS, the protocol here reported could represent a reliable method for routine analyses aimed to assess the absence of contamination in raw fresh DM samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
We present the MALDI‐TOF/TOF‐MS analyses of various hapten–bovine serum albumin (BSA) neoglycoconjugates obtained by squaric acid chemistry coupling of the spacer‐equipped, terminal monosaccharide of the O‐specific polysaccharide of Vibrio cholerae O1, serotype Ogawa, to BSA. These analyses allowed not only to calculate the molecular masses of the hapten–BSA neoglycoconjugates with different hapten–BSA ratios (4.3, 6.6 and 13.2) but, more importantly, also to localize the covalent linkages (conjugation sites) between the hapten and the carrier protein. Determination of the site of glycation was based on comparison of the MALDI‐TOF/TOF‐MS analysis of the peptides resulting from the digestion of BSA with similar data resulting from the digestion of BSA glycoconjugates, followed by sequencing by MALDI‐TOF/TOF‐MS/MS of the glycated peptides. The product‐ion scans of the protonated molecules were carried out with a MALDI‐TOF/TOF‐MS/MS tandem mass spectrometer equipped with a high‐collision energy cell. The high‐energy collision‐induced dissociation (CID) spectra afforded product ions formed by fragmentation of the carbohydrate hapten and amino acid sequences conjugated with fragments of the carbohydrate hapten. We were able to identify three conjugation sites on lysine residues (Lys235, Lys437 and Lys455). It was shown that these lysine residues are very reactive and bind lysine specific reagents. We presume that these Lys residues belong to those that are considered to be sterically more accessible on the surface of the tridimensional structure. The identification of the y‐series product ions was very useful for the sequencing of various peptides. The series of a‐ and b‐product ions confirmed the sequence of the conjugated peptides. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号