首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 72 毫秒
1.
紫外光固化涂料具有高效率、低消耗的特点,是一种新型环保节能型涂料。文章综述了紫外光固化涂料的特点、固化原理、主要组成包括齐聚物、活性稀释剂、光引发剂和助剂以及紫外光固化涂料的发展前景。  相似文献   

2.
保形涂料的研究进展   总被引:4,自引:0,他引:4  
介绍保形涂料的固化机理,比较了各类光固化保形涂料及其修复方法,综述紫外光固化保形涂料的研究进展。  相似文献   

3.
环氧丙烯酸酯的紫外光固化   总被引:8,自引:0,他引:8  
制备了适于配制紫外光固化涂料的环氧丙烯酸酯,研究了反应温度、阻聚剂、催化剂等因素对环氧树脂与丙烯酸反应的影响;讨论了反应机理和动力学;并利用红外光谱观察了产物的紫外光固化行为。季铵盐能有效地催化环氧树脂和丙烯酸的反应,当其用量为0.6%~1.2%时,在90~110℃反应4.5~8小时后,环氧基转化率大于97%。由此配制的光固化涂料经紫外光辐照能快速固化。  相似文献   

4.
紫外光固化粉末涂料   总被引:16,自引:0,他引:16  
紫外光(UV)固化粉末涂料综合了传统粉末涂料和辐射固化技术诸多优点,是涂料工业的前瞻性产品。本文介绍了紫外光固化粉末涂料的配制,固化机理,涂装工艺及潜在应用,并对其最新研究进展进行了综述。  相似文献   

5.
紫外光固化涂料简介   总被引:1,自引:0,他引:1  
本文简介感光性高分子的紫外光固化涂料的发展简史、固化机理及发展方向。  相似文献   

6.
本文简介感光性高分子的紫外光固化涂料的发展简史、固化机理及发展方向.  相似文献   

7.
滕蔓 《化学教育》2003,24(7):6-8
本文简介感光性高分子的紫外光固化涂料的发展简史、固化机理及发展方向。  相似文献   

8.
以对-甲基苯磺酸为催化剂,用丙烯酸羟乙酯和纳米SiO2进行酯化反应制备改性纳米SiO2用红外光谱仪和热失重分析仪对产物分析表明:纳米SiO2中约70.5%的Si-OH基团和丙烯酸羟乙酯发生了酯化反应。将改性前后的纳米SiO2应用于紫外光固化涂料中,研究了对涂料黏度和固化速率、涂料固化膜的铅笔硬度和耐磨性能等的影响。结果...  相似文献   

9.
二苯甲酮/胺:紫外光固化涂料中的新型引发剂   总被引:1,自引:0,他引:1  
熊伟  刘金水 《合成化学》1999,7(2):202-206
通过三羟甲基丙烷三丙烯酸酯与二乙胺的迈克尔加成反应,合成了一种新型叔胺衍生物,利用^1H NMR对其进行了验证。当该叔胺与二苯甲酮配合使用时,表现出很好的固化速度并能代替昂贵的光引发剂1173,使紫外光固化涂料的成本显著降低。同时,对该二苯安双分子引发剂的作用机理进行了探讨。  相似文献   

10.
水性紫外光固化树脂的研究进展   总被引:3,自引:0,他引:3  
综述了近年来水性紫外光固化树脂及其涂料制备的最新研究进展.详细介绍了各类水性紫外光固化树脂的结构特点、制备方法及其在涂料中的应用情况,尤其对水性紫外光固化环氧树脂、聚氨酯树脂和超支化聚合物树脂等作了重点介绍,并展望了本领域的未来发展趋势.  相似文献   

11.
In addition to the barrier properties against water vapor and oxygen, inorganic-organic polymers can also function as protection layers against unwanted migration of chemical substances in two ways. First, hybrid polymers prevent components from migrating out of polymer substrates. This is of special interest for polymeric materials containing substances like plasticizing agents, unreacted monomers or catalysts. Thus the olfactory nuisance and the toxicological emission are decreased. The plastics are also prevented from becoming prematurely brittle. Second, the coated materials are also protected against the interaction of dyes or dirt staining the material.These functions can be achieved by thermally or UV curable coating materials, synthesized by the sol-gel technique. Since several polymer materials show only a low heat resistance (e.g. PVC, polyolefines), this publication is focussed on the development of new migration barriers based on photochemically curable sols.Another advantage of the UV process in comparison to thermal treatments are the short curing times and low power consumption which make this process even more attractive for industrial applications. The coatings were characterized by IR and solid state NMR spectroscopy. The migration barrier properties were tested according to industrial standards.Due to the choice of specific functional groups, these hybrid polymers can be further modified in order to combine the migration barrier function with additional properties: scratch and abrasion resistance, hydrophobicity, antistatic effects. Examples of feasible combinations of properties are also given.  相似文献   

12.
本文以改性聚氨酯丙烯酸酯为主体,制备了一种PET光学膜用透明硬涂层材料.讨论了光固化树脂、活性稀释剂、光引发剂等因素对PET光学膜加硬后的硬度、耐磨性、附着力等性能的影响,并从反应机理方面分析探讨了实验结果.经测试:实验制备的涂层硬度5H,附着力100%,经RCA纸带耐磨擦试(500g,1000cycles),PET膜可见光透过率无损失,同时具有低表面张力,出色的柔韧性和良好的耐化学品性.  相似文献   

13.
UV‐curable fluorinated organic–inorganic hybrid coatings were prepared by the sol–gel technique. Perfluorinated urethane modified alkoxysilane was synthesized by the reaction between perfluoro alcohol and 3‐isocyanatopropyltrimethoxysilane. The prepared formulations were applied onto poly(methyl methacrylate) (PMMA) and acrylonitrile butadiene styrene (ABS) panels and polymerized by UV‐curing. The properties of the hybrid coatings such as hardness, chemical resistance, thermal stability, surface morphology, double bond conversion, and also contact angle measurements were investigated. Contact angle measurements have shown that the addition of fluorinated silane precursor to the hybrid system improved the water repellency and increased the contact angle from 65° to 106°. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
10B containing organic–inorganic hybrid coating material based on a UV-curable formulation was prepared via anhydrous sol–gel technique. UV curable coatings were applied on Plexiglas (PMMA) substrates. The molecular structure of the coating material was analyzed by ATR-FTIR spectroscopy technique. The characterization of the UV-curable coating was evaluated by various techniques such as gel content, abrasion resistance, chemical resistance, pencil hardness, pendulum hardness, MEK rubbing test, contact angle, cross-cut test, gloss, transmittance test, neutron absorption, Limiting Oxygen Index and stress–strain tests. Hybrid coatings showed a significant enhancement in radiation shielding properties. The thermal behavior of coatings was also evaluated. It is observed that the thermal stability of coatings mainly depends on their boron and silicate contents. Results of all analysis conducted on hybrid films, and coatings were discussed.  相似文献   

15.
In the present study, maleimide‐modified epoxide resin containing UV‐curable hybrid coating materials were prepared and coated on polycarbonate substrates in order to improve their surface properties. UV‐curable, bismaleimide‐modified aliphatic epoxy resin was prepared from N‐(p‐carboxyphenyl) maleimide (p‐CPMI) and cycloaliphatic epoxy (Cyracure‐6107) resin. The structure of the bismaleimide modified aliphatic epoxy resin was analyzed by FTIR and the characteristic absorption band for maleimide ring was clearly observed at 3100 cm?1. Silica sol was prepared from tetraethylorthosilicate (TEOS) and methacryloxy propyl trimethoxysilane (MAPTMS) by sol–gel method. The coating formulations with different compositions were prepared from UV‐curable bismaleimide‐based epoxy oligomer and sol–gel mixture. The molecular structure of the hybrid coating material was analyzed by 29Si‐CP/MAS NMR spectroscopy techniques. In the 29Si CP/MAS NMR spectrum of the hybrid coating, mainly two kinds of signals were observed at ?68 and ?110 ppm that correspond to T3 and Q4 peaks, respectively. This result shows that a fully condensed structure was obtained. The thermal and morphological properties of these coatings materials were investigated by using TGA and SEM techniques. Hardness and abrasion resistance properties of coating materials were examined and both were found to increase with sol–gel precursor content of the coating. The photopolymerization kinetics was investigated by using RT‐IR. 70% conversion was attained with the addition of 15 wt% of BMI resin into the acrylate‐based coating formulation. It was found that the UV‐curable organic–inorganic hybrid coatings improved the surface properties of polycarbonate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
This work aims at studying the abrasion resistance of differently formulated organic–inorganic hybrid coatings prepared by sol–gel method. The organic phase contained UV curable urethane acrylate oligomers and monomers having different functionalities. The inorganic phase was composed of tetraethyl orthosilicate (TEOS) and 3-methacryloxy propyltrimethoxy silane (MEMO). Through a Taguchi experimental design, the impact of influencing parameters such as molar ratio of precursors, hydrolysis ratio (R), post-curing temperature, post-curing time and weight percentage of inorganic to organic part were investigated. Very high transparency of hybrid coatings indicated that nano sized inorganic phase had formed. MEMO could facilitate the connection of two phases, preventing macro phase separation. However, high levels of MEMO lead to ‘defect structure’ in silica network as well as to decreased transparency and mechanical properties. The optimum condition in which highly transparent films with great abrasion resistance occurred was observed at equimolar ratio of water to alkoxide and TEOS: MEMO ratio being unity. Statistical analysis revealed that thermal post-curing was not significantly important.  相似文献   

17.
UV curable, hard, transparent inorganic/organic composites with covalent links between the inorganic and the organic networks were prepared by the sol-gel method. These hybrid coating materials were synthesized using a commercially available, acrylate end-capped polyester or polyurethane oligomeric resin (EBC80, EBC284), hexanedioldiacrylate (HDDA) as a reactive solvent, 3-(trimethoxysilyl)propoxymethacrylate (TMSPM) as a coupling agent between the organic and inorganic phase, and a metal alkoxide, tetraethylorthosilicate (TEOS). The materials were applied on primer or oxygen plasma pretreated polycarbonate sheets and UV cured, followed by a thermal treatment to give a transparent coating with a good adhesion and abrasion resistance. The high transmission and the thermogravimetric behavior indicate the presence of a nanoscale hybrid composite, as is confirmed by SAXS and TEM measurements. In a Taber Abrasion Test, uncoated polycarbonate sheets exhibit a 48% decrease in light transmittance at 600 nm after 300 wear cycles, whereas the EBC80 hybrid coating system containing 9 wt% SiO2 (EBC80/25Si) shows only 28% decrease in light transmittance. A maximal improvement of the abrasion resistance is achieved when 23 wt% SiO2 is incorporated (EBC80/60Si, EBC284/60Si) with only 20% decrease in light transmittance. The abrasion resistance of glass is not yet encountered. For optimal results, it is essential that the rate of condensation of the silanol groups is sufficiently high to form a dense three-dimensional network.  相似文献   

18.
Novel abrasion resistant coating materials prepared by the sol-gel method have been developed and applied on the polymeric substrates bisphenol-A polycarbonate and diallyl diglycol carbonate resin (CR-39). These coatings are inorganic/organic hybrid network materials synthesized from 3-isocyanatopropyltriethoxysilane functionalized organics and metal alkoxide. The organic components are 3,3-iminobispropylamine (IMPA), resorcinol (RSOL), diethylenetriamine (DETA), poly(ethyleneimine) (PEI), glycerol and a series of diols. The metal alkoxides are tetraethoxysilane (TEOS) and tetramethoxysilane (TMOS). These materials are spin coated onto bisphenol-A polycarbonate and CR-39 sheets and thermally cured to obtain a transparent coating of a few microns in thickness. Following the curing, the abrasion resistance is measured and compared with an uncoated control. It was found that the abrasion resistance of inorganic/organic hybrid coatings in the neat form or containing metal alkoxide can be very effective to improve the abrasion resistance of polymeric substrates. The adhesion tests show that the adhesion between coating and substrate can be greatly improved by treating the polymeric substrate surface with a primer solution of isopropanol containing 3-aminopropyltriethoxysilane (3-APS). The interaction between 3-APS and the polycarbonate surface was investigated by a molecular dynamics simulation. The results strongly suggest that the hydrogen bonding between the amino group of the 3-APS and ester group in the polycarbonate backbone are sufficiently strong to influence the orientation of the primer molecules. The abrasion resistance of these new coating systems is discussed in light of the structure of the organic components. All of these results show that these coating materials have excellent abrasion resistance and have potential applications as coating materials for lenses and other polymeric products.  相似文献   

19.
The synthesis is reported of a new series of polymeric photoinitiators obtained by copolymerization of a-methylolbenzoin methyl ether acrylate (MBA) with different N,N-dialkylamino alkyl acrylates. The copolymers have been fully characterized and employed in the photoinitiated polymerization and crosslinking reactions of a standard acrylic formulation for clear curable coatings. The photoinitiation activity of the above systems has been measured by using microwave dielectrometry and differential photocalorimetry, and compared with that found for the corresponding low-molecular-weight models. The results clearly indicate that the copolymeric systems display a remarkable decrease of the induction period and an improved overall activity in the UV curing of the acrylic coatings. An interpretation of the experimental findings is also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号