首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Sialylation is essential for a variety of cellular functions. Herein, we used bovine fetuin with three potential N-linked glycosylation sites containing complex-type glycan structures, four potential O-linked glycosylation sites and six potential phosphorylation sites as a model compound to develop a highly-efficient digestion strategy for sialylated glycoproteins and efficient enrichment strategy for sialylated glycopeptides using titanium dioxide. The former according to the process of alkaline phosphatase digestion followed by tryptic digestion and then proteinase K digestion could greatly improve the enzymatic efficiency on fetuin, and the latter could obviously enhance the enrichment efficiency for multisialylated glycopeptides using phosphoric acid solution as elution buffer. The mass spectra of the enriched glycopeptides derived from fetuin reveal that several series of the ion clusters with mass difference of 291 Da correspond to the presence of multisialylated glycopeptides. In addition, the approach was applied to characterize the sialylated status of α2-macroglobulin and transferrin, respectively, from the sera of healthy subjects and sex- and age-matched patients with thyroid cancer, and their spectra indicate that the change in the amount of the glycoforms containing different number of sialic acid (SA) residues from one glycosylation site may be used to differentiate between healthy subjects and cancer cases.  相似文献   

2.
This paper describes an improved method for the sequence analysis of Arg‐containing glycopeptide by MALDI mass spectrometry (MS). The method uses amino group derivatization (4‐aza‐6‐(2,6‐dimethyl‐1‐piperidinyl)‐5‐oxohexanoic acid N‐succinimidyl ester) and removal (carboxypeptidase B) or modification (peptidylarginine deiminase 4) of the arginine residue of the peptide. The derivatization attaches a basic tertiary amine moiety onto the peptides, and the enzymatic treatment removes or modifies the arginine residue. Fragmentation of the resulting glycopeptide under low‐energy collision‐induced dissociation yielded a simplified ion series of both the glycan and the peptide that can facilitate their sequencing. The feasibility of the method was studied using α1‐acid glycoprotein‐derived N‐linked glycopeptides, and glycan and peptide in each glycopeptide were successfully sequenced by MALDI tandem MS (MS/MS). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Previously, we have characterized the HIV-I(SF2) gp120 glycopeptides using matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) and nanospray electrospray ionization (ESI). Although we characterized 25 of 26 consensus glycosylation sites, we could not obtain any information about the extent of sialylation of the complex glycans. Sialylation is known to alter the biological activity of some glycoproteins, e.g., infectivity of some human and nonhuman primate lentiviruses is reduced when the envelope glycoproteins are extensively sialylated, and thus, characterization of the extent of sialylation of complex glycoproteins is of biological interest. Since neither MALDI/MS nor nanospray ESI provided much information about sialylation, probably because of suppression effects inherent in these techniques, we utilized online nanocapillary high performance liquid chromatography (nHPLC) with ESI/MS to characterize the sites and extent of sialylation on gp120. Eight of the known 26 consensus glycosylation sites of HIV-ISF2 gp120 were determined to be sialylated. Two of these sites were previously uncharacterized complex glycans. Thirteen high mannose sites were also determined. The heterogeneity of four of these sites had not been previously characterized. In addition, a peptide containing two consensus glycosylation sites, which had previously been determined to contain complex glycans, was also determined to be high mannose as well.  相似文献   

4.
This study presents a simple and sensitive high‐throughput matrix‐assisted laser desorption/ionization time‐of‐flight tandem mass spectrometry (MALDI‐MS/MS) method for ex vivo quantification of methylphenidate (MPH) in rat plasma and brain. The common MALDI matrix alpha‐cyano‐4‐hydroxycinnamic acid was used to obtain an optimal dried droplet preparation. For method validation, standards diluted in plasma and brain homogenate prepared from untreated (control) rats were used. MPH was quantified within a concentration range of 0.1–40 ng/ml in plasma and 0.4–40 ng/ml in brain homogenate with an excellent linearity (R2 ≥ 0.9997) and good precision. The intra‐day and inter‐day accuracies fulfilled the FDA's ±15/20 critera. The recovery of MPH ranged from 93.8 to 98.5% and 87.2 to 99.8% in plasma and homogenate, respectively. We show that MPH is successfully quantified in plasma and brain homogenate of rats pre‐treated with this drug using the internal standard calibration method. By means of this method, a linear correlation between plasma and brain concentration of MPH in rodents pre‐treated with MPH was detected. The simple sample preparation based on liquid‐liquid extraction and MALDI‐MS/MS measurement requires approximately 10 s per sample, and this significantly reduces analysis time compared with other analytical methods. To the best of our knowledge, this is the first MALDI‐MS/MS method for quantification of MPH in rat plasma and brain. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The thermal stability of several commonly used crystalline matrix‐assisted ultraviolet laser desorption/ionization mass spectrometry (UV‐MALDI‐MS) matrices, 2,5‐dihydroxybenzoic acid (gentisic acid; GA), 2,4,6‐trihydroxyacetophenone (THA), α‐cyano‐4‐hydroxycinnamic acid (CHC), 3,5‐dimethoxy‐4‐hydroxycinnamic acid (sinapinic acid; SA), 9H‐pirido[3,4‐b]indole (nor‐harmane; nor‐Ho), 1‐methyl‐9H‐pirido[3,4‐b]indole (harmane; Ho), perchlorate of nor‐harmanonium ([nor‐Ho + H]+) and perchlorate of harmanonium ([Ho + H]+) was studied by heating them at their melting point and characterizing the remaining material by using different MS techniques [electron ionization mass spectrometry (EI‐MS), ultraviolet laserdesorption/ionization‐time‐of‐flight‐mass spectrometry (UV‐LDI‐TOF‐MS) and electrospray ionization‐time‐of‐flight‐mass spectrometry (ESI‐TOF‐MS)] as well as by thin layer chromatography analysis (TLC), electronic spectroscopy (UV‐absorption, fluorescence emission and excitation spectroscopy) and 1H nuclear magnetic resonance spectroscopy (1H‐NMR). In general, all compounds, except for CHC and SA, remained unchanged after fusion. CHC showed loss of CO2, yielding the trans‐/cis‐4‐hydroxyphenylacrilonitrile mixture. This mixture was unambiguously characterized by MS and 1H‐NMR spectroscopy, and its sublimation capability was demonstrated. These results explain the well‐known cluster formation, fading (vanishing) and further recovering of CHC when used as a matrix in UV‐MALDI‐MS. Commercial SA (SA 98%; trans‐SA/cis‐SA 5 : 1) showed mainly cis‐ to‐trans thermal isomerization and, with very poor yield, loss of CO2, yielding (3′,5′‐dimethoxy‐4′‐hydroxyphenyl)‐1‐ethene as the decarboxilated product. These thermal conversions would not drastically affect its behavior as a UV‐MALDI matrix as happens in the case of CHC. Complementary studies of the photochemical stability of these matrices in solid state were also conducted. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The extent of N-glycosylation of yeast external invertase at each of the 14 potential sites was determined by the combination of proteolytic digestions and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF-MS). The average molecular mass of the intact external invertase was determined as 97 kDa by MALDI/TOF-MS. The intact protein was digested with trypsin, Lys-C and Asp-N, followed by high-performance liquid chromatographic separation. The proteolytic digests were analyzed by MALDI/MS screening for the glycopeptides. The glycopeptides were then treated with peptide:N-glycosidase F (PNGase F) and/or endo-beta-N-acetylglucosaminidase (Endo H) and the molecular mass of the deglycosylated peptide was determined by MALDI/MS and matched with the peptide predicted by a computer program. The sequences of some peptides or deglycosylated peptides were identified by the MALDI post-source decay technique. The size of the oligosaccharide, the degree of glycosylation and the distribution of the oligosaccharides at each individual potential glycosylation site were characterized. This information goes for beyond previously published data and sometimes differs from them. During this study, the amino acid sequence originally derived from the DNA sequence of the gene coding for invertase was also verified and it was found that this protein when expressed from SUC2 gene might be created as more than one sequence which differ by a few amino acid substitutions (Asn58<-->Thr, Asn65-->His and Val412<-->Ala).  相似文献   

7.
In pre‐implantation embryos, lipids play key roles in determining viability, cryopreservation and implantation properties, but often their analysis is analytically challenging because of the few picograms of analytes present in each of them. Matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) allows obtaining individual phospholipid profiles of these microscopic organisms. This technique is sensitive enough to enable analysis of individual intact embryos and monitoring the changes in membrane lipid composition in the early stages of development serving as screening method for studies of biology and biotechnologies of reproduction. This article introduces an improved, more comprehensive MALDI‐MS lipid fingerprinting approach that considerably increases the lipid information obtained from a single embryo. Using bovine embryos as a biological model, we have also tested optimal sample storage and handling conditions before the MALDI‐MS analysis. Improved information at the molecular level is provided by the use of a binary matrix that enables phosphatidylcholines, sphingomyelins, phosphatidylserines, phosphatidylinositols and phosphoethanolamines to be detected via MALDI(±)‐MS in both the positive and negative ion modes. An optimal MALDI‐MS protocol for lipidomic monitoring of a single intact embryo is therefore reported with potential applications in human and animal reproduction, cell development and stem cell research. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
We utilized three different types of TiO2 nanoparticles (NPs) namely TiO2‐dopamine, TiO2‐CdS and bare TiO2 NPs as multifunctional nanoprobes for the rapid enrichment of phosphopeptides from tryptic digests of α‐ and β‐casein, milk and egg white using a simplified procedure in MALDI‐TOF‐MS. Surface‐modified TiO2 NPs serve as effective matrices for the analysis of peptides (gramicidin D, HW6, leucine‐enkephalin and methionine‐enkephalin) and proteins (cytochrome c and myoglobin) in MALDI‐TOF‐MS. In the surface‐modified TiO2 NPs‐based MALDI mass spectra of these analytes (phosphopetides, peptides and proteins), we found that TiO2‐dopamine and bare TiO2 NPs provided an efficient platform for the selective and rapid enrichment of phosphopeptides and TiO2‐CdS NPs efficiently acted as the matrix for background‐free detection of peptides and proteins with improved resolution in MALDI‐MS. We found that the upper detectable mass range is 17 000 Da using TiO2‐CdS NPs as the matrix. The approach is simple and straightforward for the rapid analysis of phosphopeptides, peptides and proteins by MALDI‐MS in proteome research.  相似文献   

9.
Matrix‐assisted laser desorption/ionization (MALDI) is a mass spectrometry (MS) ionization technique suitable for a wide variety of sample types including highly complex ones such as natural resinous materials. Coupled with Fourier transform ion cyclotron resonance (FT‐ICR) mass analyser, which provides mass spectra with high resolution and accuracy, the method gives a wealth of information about the composition of the sample. One of the key aspects in MALDI‐MS is the right choice of matrix compound. We have previously demonstrated that 2,5‐dihydroxybenzoic acid is suitable for the positive ion mode analysis of resinous samples. However, 2,5‐dihydroxybenzoic acid was found to be unsuitable for the analysis of these samples in the negative ion mode. The second problem addressed was the limited choice of calibration standards offering a flexible selection of m/z values under m/z 1000. This study presents a modified MALDI‐FT‐ICR‐MS method for the analysis of resinous materials, which incorporates a novel matrix compound, 2‐aminoacridine for the negative ion mode analysis and extends the selection of internal standards with m/z <1000 for both positive (15 different phosphazenium cations) and negative (anions of four fluorine‐rich sulpho‐compounds) ion mode. The novel internal calibration compounds and matrix material were tested for the analysis of various natural resins and real‐life varnish samples taken from cultural heritage objects. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
The reagents 19 hydrazide and 14 hydrazine were examined to function as reactive matrices for matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) to detect gaseous aldehydes. Among them, two hydrazide (2‐hydroxybenzohydrazide and 3‐hydroxy‐2‐naphthoic acid hydrazide) and two hydrazine reagents [2‐hydrazinoquinoline and 2,4‐dinitrophenylhydrazine (DNPH)] were found to react efficiently with carbonyl groups of gaseous aldehydes (formaldehyde, acetaldehyde and propionaldehyde); these are the main factors for sick building syndrome and operate as reactive matrices for MALDI‐MS. Results from accurate mass measurements by JMS‐S3000 Spiral‐TOF suggested that protonated ion peaks corresponding to [M + H]+ from the resulting derivatives were observed in all cases with the gaseous aldehydes in an incubation, time‐dependent manner. The two hydrazide and two hydrazine reagents all possessed absorbances at 337 nm (wavelength of MALDI nitrogen laser), with, significant electrical conductivity of the matrix crystal and functional groups, such as hydroxy group and amino group, being important for desorption/ionization efficiency in MALDI‐MS. To our knowledge, this is the first report that gaseous molecules could be derivatized and detected directly in a single step by MALDI‐MS using novel reactive matrices that were derivatizing agents with the ability to enhance desorption/ionization efficiency. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Accurate and rapid determination of trypanosomatids is essential in epidemiological surveillance and therapeutic studies. Matrix‐assisted laser desorption ionization/time of flight mass spectrometry (MALDI‐TOF MS) has been shown to be a useful and powerful technique to identify bacteria, fungi, metazoa and human intact cells with applications in clinical settings. Here, we developed and optimized a MALDI‐TOF MS method to profile trypanosomatids. trypanosomatid cells were deposited on a MALDI target plate followed by addition of matrix solution. The plate was then subjected to MALDI‐TOF MS measurement to create reference mass spectra library and unknown samples were identified by pattern matching using the BioTyper software tool. Several m/z peaks reproducibly and uniquely identified trypanosomatids species showing the potentials of direct identification of trypanosomatids by MALDI‐TOF MS. Moreover, this method discriminated different life stages of Trypanosoma cruzi, epimastigote and bloodstream trypomastigote and Trypanosoma brucei, procyclic and bloodstream. T. cruzi Discrete Typing Units (DTUs) were also discriminated in three clades. However, it was not possible to achieve enough resolution and software‐assisted identification at the strain level. Overall, this study shows the importance of MALDI‐TOF MS for the direct identification of trypanosomatids and opens new avenues for mass spectrometry‐based detection of parasites in biofluids. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Mass spectrometry (MS) is used to quantify the relative distribution of glycans attached to particular protein glycosylation sites (micro‐heterogeneity) and evaluate the molar site occupancy (macro‐heterogeneity) in glycoproteomics. However, the accuracy of MS for such quantitative measurements remains to be clarified. As a key step towards this goal, a panel of related tryptic peptides with and without complex, biantennary, disialylated N‐glycans was chemically synthesised by solid‐phase peptide synthesis. Peptides mimicking those resulting from enzymatic deglycosylation using PNGase F/A and endo D/F/H were synthetically produced, carrying aspartic acid and N‐acetylglucosamine‐linked asparagine residues, respectively, at the glycosylation site. The MS ionisation/detection strengths of these pure, well‐defined and quantified compounds were investigated using various MS ionisation techniques and mass analysers (ESI‐IT, ESI‐Q‐TOF, MALDI‐TOF, ESI/MALDI‐FT‐ICR‐MS). Depending on the ion source/mass analyser, glycopeptides carrying complex‐type N‐glycans exhibited clearly lower signal strengths (10–50% of an unglycosylated peptide) when equimolar amounts were analysed. Less ionisation/detection bias was observed when the glycopeptides were analysed by nano‐ESI and medium‐pressure MALDI. The position of the glycosylation site within the tryptic peptides also influenced the signal response, in particular if detected as singly or doubly charged signals. This is the first study to systematically and quantitatively address and determine MS glycopeptide ionisation/detection strengths to evaluate glycoprotein micro‐heterogeneity and macro‐heterogeneity by label‐free approaches. These data form a much needed knowledge base for accurate quantitative glycoproteomics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Paenibacillus polymyxa are rhizobacteria with a high potential to produce natural compounds of biotechnological and medical interest. Main products of P . polymyxa are fusaricidins, a large family of antifungal lipopeptides with a 15‐guanidino‐3‐hydroxypentadecanoic acid (GHPD) as fatty acid side chain. We use the P . polymyxa strain M‐1 as a model organism for the exploration of the biosynthetic potential of these rhizobacteria. Using matrix‐assisted laser‐desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) about 40 new fusaricidins were detected which were fractionated by reversed‐phase (rp) HPLC. Their structure was determined by MALDI‐LIFT‐TOF/TOF fragment analysis. The dominant fragment in the product ion spectra of fusaricidins appeared at m /z 256.3, 284.3 and 312.4, respectively, indicating variations in their fatty acid part. Two new subfamilies of fusaricidins were introduced which contain guanidino‐3‐hydroxyhepta‐ and nonadecanoic acid as fatty acid constituents. Apparently, the end‐standing guanidine group is not modified as shown by direct infusion nano‐electrospray ionization mass spectrometry (nano‐ESI MS). The results of this study suggest that advanced mass spectrometry is the method of choice for investigating natural compounds of unusual diversity, like fusaricidins. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Bacterial fatty acid profiling is a well‐established technique for bacterial identification. Ten bacteria were analyzed using both positive‐ and negative‐ion modes with a modified matrix‐assisted laser desorption ionization mass spectrometry (MALDI MS) approach using CaO as a matrix replacement (metal oxide laser ionization MS (MOLI MS)). The results show that reproducible lipid cleavage similar to thermal in situ tetramethyl ammonium hydroxide saponification/derivatization had occurred. Principal component analysis showed that replicates from each organism grouped in a unique space. Cross validation (CV) of spectra from both ionization modes resulted in greater than 94% validation of the data. When CV results were compared for the two ionization modes, negative‐ion data produced a superior outcome. MOLI MS provides clinicians a rapid, reproducible and cost‐effective bacterial diagnostic tool. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Branched polyethylenimines (PEIs) with lower average molecular weights (600, 1200 and 1800 Da) have been studied by Electrospray Ionization (ESI) and Matrix‐Assisted Laser Desorption/Ionization (MALDI) mass spectrometry. In both, ESI and MALDI mass spectra, the main distribution arises from protonated PEI oligomers with NH2 end groups, [PEI + H]+, which are observed at m/z 43n + 18. A trace of sodium contamination in the PEI samples results in the presence of a series that appears at m/z 43n + 40 [PEI + Na]+. However, only the MALDI mass spectra show a [PEI + K]+ series at m/z 43n + 56, because of matrix contamination with potassium, and a series generated by condensation of the matrix with PEI at m/z 43n + 30. Collisionally activated dissociation tandem mass spectrometry (CAD (MS/MS)) of protonated PEI oligomers is shown to yield three fragment ion series bn, and Kn. The experiments have demonstrated the capabilities of these mass spectrometry techniques, along with CAD MS/MS to detect and characterize such polar synthetic polymers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
2,5‐Dihydroxybenzoic acid (DHB) is one of the most widely used and studied matrix compounds in matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry. However, the influence of ageing of the DHB solution on the MALDI mass spectra has not been yet systematically studied. In this work, the possible changes occurring in the acidified acetonitrile/water solution of the MALDI matrix compound DHB during 1‐year usage period have been monitored with MALDI‐Fourier transform ion cyclotron resonance mass spectrometer (MALDI‐FT‐ICR‐MS) and attenuated total reflectance Fourier transform infrared (ATR‐FT‐IR) spectroscopy. No significant ageing products have been detected. The ability of the aged DHB solution to act as a MALDI matrix was tested with two materials widely used in art and conservation – bone glue (a proteinaceous material) and shellac resin (a resinous material) – and good results were obtained. A number of peaks in the mass spectra measured from the DHB solution were identified, which can be used for internal calibration of the mass axis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
mAbs are highly complex proteins that present a wide range of microheterogeneity that requires multiple analytical methods for full structure assessment and quality control. As a consequence, the characterization of mAbs on different levels is particularly product‐ and time‐consuming. CE‐MS couplings, especially to MALDI, appear really attractive methods for the characterization of biological samples. In this work, we report the last instrumental development and performance of the first totally automated off‐line CE‐UV/MALDI‐MS/MS. This interface is based on the removal of the original UV cell of the CE apparatus, modification of the spotting device geometry, and creation of an integrated delivery matrix system. The performance of the method was evaluated with separation of five intact proteins and a tryptic digest mixture of nine proteins. Intact protein application shows the acquisition of electropherograms with high resolution and high repeatability. In the peptide mapping approach, a total number of 154 unique identified peptides were characterized using MS/MS spectra corresponding to average sequence coverage of 64.1%. Comparison with NanoLC/MALDI‐MS/MS showed complementarity at the peptide level with an increase of 42% when using CE/MALDI‐MS coupling. Finally, this work represents the first analysis of intact mAb charge variants by CZE using an MS detection. Moreover, using a peptide mapping approach CE‐UV/MALDI‐MS/MS fragmentation allowed 100% sequence coverage of the light chain and 92% of the heavy chain, and the separation of four major glycosylated peptides and their structural characterization.  相似文献   

18.
The molar mass determination of block copolymers, in particular amphiphilic block copolymers, has been challenging with chromatographic techniques. Therefore, methoxy poly(ethylene glycol)‐b‐poly(styrene) (mPEG‐b‐PS) was synthesized by atom transfer radical polymerization (ATRP) and characterized in detail not only by conventional chromatographic techniques, such as size exclusion chromatography (SEC), but also by matrix‐assisted laser/desorption ionization tandem mass spectrometry (MALDI‐TOF MS/MS). As expected, different molar mass values were obtained in the SEC measurements depending on the calibration standards (either PEG or PS). In contrast, MALDI‐TOF MS/MS analysis allowed the molar mass determination of each block, by the scission of the weakest point between the PEG and PS block. Thus, fragments of the individual blocks could be obtained. The PEG block showed a depolymerization reaction, while for the PS block fragments were obtained in the monomeric, dimeric, and trimeric regions as a result of multiple chain scissions. The block length of PEG and PS could be calculated from the fragments recorded in the MALDI‐TOF MS/MS spectrum. Furthermore, the assignment of the substructures of the individual blocks acquired by MALDI‐TOF MS/MS was accomplished with the help of the fragments that were obtained from the corresponding homopolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

19.
High‐resolution matrix‐assisted laser desorption/ionization (MALDI) time‐of‐flight mass spectrometry (TOF MS) was used for the analysis of the low‐molecular‐weight products from the photo‐oxidation of poly(3‐hexylthiophene) (P3HT) in solution and thin film. Eight new peak series were observed in the low‐mass range of the mass spectra of the products degraded in solution, and the formulas of the eight components were determined from the accurate mass. From SEC/MALDI‐TOF MS, two components were identified as the degraded products, and the other six components were derived from the fragmentation of the degraded products during the MALDI process. A mechanism for the formation of these components was proposed on the basis of the results of MALDI‐TOF MS. For the thin film degradation, a part of products in the solution degradation were observed, which supports that the oxidation of P3HT in solution and thin film proceeded in the same mechanism. This study shows that high‐resolution MALDI‐TOF MS is effective for the analysis of the low‐molecular‐weight products from P3HT photo‐oxidation and expected to be feasible for the degradation analyses of other polymers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Biocytin hydrazide is widely used to biotinylate the carbohydrate moieties of glycoproteins. In this study, however, biocytin hydrazide was found to be able to directly biotinylate peptides and proteins. This phenomenon may cause false identification of non‐glycopeptides/non‐glycoproteins as glycopeptides/glycoproteins. Here, we report a systematic investigation of the reaction of peptides/proteins with biocytin hydrazide. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry is used to analyze the biotinylation reaction between peptides/proteins and biocytin hydrazide. Peptides/proteins were reacted with biocytin hydrazide in diverse solvent systems with different biocytin hydrazide concentrations for up to 96 h at temperatures ranging from 4 °C to 65 °C. Singly biotinylated or multiply biotinylated peptides/proteins are observed. The efficiency of the biotinylation reaction increases with higher temperature, higher biocytin hydrazide concentration, or longer reaction time. The influence of buffer pH on the biotinylation reaction of peptides/proteins is less pronounced. The biotinylation efficiency is optimum at neutral pH. Data suggests that the peptides are biotinylated as efficiently as proteins. The observation that peptides/proteins condense only with biocytin hydrazide, 2‐iminobiotin hydrazide, adipic dihydrazide and phenyl hydrazine but not with biocytin HCl and 2‐iminobiotin, indicates that the biotinylation reaction of peptides/proteins occurs with the hydrazide moiety but not with biotin moiety of the biotinylated reagent. The postsource decay data of biotinylated P14R indicates that biocytin hydrazide condenses with the guanidino group of arginine's side chain of P14R, indicating that besides N‐terminal and lysine residue of peptides/proteins, arginine residue is capable of reacting with biocytin hydrazide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号