首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
2.
We report the regioselective Cu‐free click modification of styrene functionalized DNA with nitrile oxides. A series of modified oligodeoxynucleotides (nine base pairs) was prepared with increasing styrene density. 1,3‐Dipolar cycloaddition with nitrile oxides allows the high density functionalization of the styrene modified DNA directly on the DNA solid support and in solution. This click reaction proceeds smoothly even directly in the DNA synthesizer and gives exclusively 3,5‐disubstituted isoxazolines. Additionally, PCR products (300 and 900 base pairs) were synthesized with a styrene triphosphate and KOD XL polymerase. The click reaction on the highly modified PCR fragments allows functionalization of hundreds of styrene units on these large DNA fragments simultaneously. Even sequential Cu‐free and Cu‐catalyzed click reaction of PCR amplicons containing styrene and alkyne carrying nucleobases was achieved. This new approach towards high‐density functionalization of DNA is simple, modular, and efficient.  相似文献   

3.
A highly selective CuII‐catalyzed cross‐dehydrogenative ortho‐aminomethylation of phenols with aniline derivatives is described. The corresponding C(sp2)?C(sp3) coupling products were obtained in moderate to excellent yields under mild reaction conditions and with a broad substrate scope. A radical mechanism is proposed.  相似文献   

4.
Herein, we report the synthesis of Cu/Cu2O nanocomposites by a one‐step hydrothermal process at 180 °C, for which the resulting morphology is dependent on the hydrothermal reaction time (24, 72, and 120 h). With a longer reaction time of 120 h, a rod‐shape morphology is obtained, whereas at 72 and 24 h assemblies of nanoparticles are obtained. The rod‐shaped (120 h) particles of the Cu/Cu2O nanocomposites show a much higher efficiency (6.3 times) than the agglomerates and 2.5 times more than the assemblies of nanoparticles for the hydrogen‐evolution reaction. During the oxygen‐evolution reaction, the nanorods produce a current that is 5.2 and 3.7 times higher than that produced by the agglomerated and assembled nanoparticles, respectively. The electrocatalysts are shown to be highly stable for over 50 cycles. As catalysts for organic synthesis, a 100 % yield is achieved in the Sonogashira cross‐coupling reaction with the nanorods, which is higher than with the other nanocomposite particles. This result demonstrates the significant enhancement of yield obtained with the nanorods for cross‐coupling reactions.  相似文献   

5.
Twelve ternary alloys in the Ca‐Cu‐Sn system were synthesized as a test on the existing phases. They were prepared from the elements sealed under argon in Ta crucibles, melted in an induction furnace and annealed at 700 °C or 600 °C. Four ordered compounds were found: CaCuSn (YbAuSn type), Imm2, a = 4.597(1) Å, b = 22.027(2) Å, c = 7.939(1) Å, Z = 12, wR2 = 0.080, 1683 F2 values; Ca3Cu8Sn4 (Nd3Co8Sn4 type), P63mc, a = 9.125(1) Å, c = 7.728(1) Å, Z = 2, wR2 = 0.087, 704 F2 values; CaCu2Sn2 (new structure type), C2/m, a = 10.943(3) Å, b = 4.222(1) Å, c = 4.834(1) Å, β = 107.94(1)°, Z = 2, wR2 = 0.051, 343 F2 values; CaCu9Sn4 (LaFe9Si4 type), I4/mcm, a = 8.630(1) Å, c = 12.402(1) Å, Z = 4, wR2 = 0.047, 566 F2 values. In all phases the shortest Cu‐Sn distances are in the range 2.59‐2.66Å, while the shortest Cu‐Cu distances are practically the same, 2.53‐2.54Å, except CaCuSn where no Cu‐Cu contacts occur.  相似文献   

6.
Novel N‐aryltriazole nucleosides were synthesized via a Cu‐mediated C? N cross‐coupling reaction, using 3‐aminotriazole acyclonucleosides and various boronic acid reagents. Interestingly, N‐arylation proceeded much more rapidly on the amide group than on the amine group, leading to selective N‐arylation of the amide functionality on nucleosides containing both groups on the triazole nucleobase.  相似文献   

7.
8.
This account provides an overview of current research activities on nanoparticles containing the earth‐abundant and inexpensive element copper (Cu) and Cu‐based nanoparticles, especially in the field of environmental catalysis. The different synthetic strategies with possible modification of the chemical/ physical properties of these nanoparticles using such strategies and/or conditions to improve catalytic activity are presented. The design and development of support and/or bimetallic systems (e. g., alloys, intermetallic, etc.) are also included. Herein, we report synthetic approaches of Cu and Cu‐based nanoparticles (monometallic copper, bimetallic copper and copper (II) oxide nanoparticles/nanostructures) and impregnation of such nanoparticles onto support material (e. g., Co3O4 nanostructure), along with their applications as environmental catalyst for various oxidation and reduction reactions. Finally, this account provides necessary advances and perspectives of Cu‐based nanoparticles in the environmental catalysis.  相似文献   

9.
The density functional theory (DFT) model ONIOM(M06L/6‐311++G(2df,2p):UFF was employed to reveal the catalytic activity of CuII in the paddle‐wheel unit of the metal‐organic framework (MOF)‐505 material in the Mukaiyama aldol reaction compared with the activity of Cu‐ZSM‐5 zeolites. The aldol reaction between a silyl enol ether and formaldehyde catalyzed by the Lewis acidic site of both materials takes place through a concerted pathway, in which the formation of the C? C bond and the transfer of the silyl group occurs in a single step. MOF‐505 and Cu‐ZSM‐5 are predicted to be efficient catalysts for this reaction as they strongly activate the formaldehyde carbonyl carbon electrophile, which leads to a considerably lower reaction barrier compared with the gas‐phase system. Both MOF‐505 and Cu‐ZSM‐5 catalysts stabilize the reacting species along the reaction coordinate, thereby lowering the activation energy, compared to the gas‐phase system. The activation barriers for the MOF‐505, Cu‐ZSM‐5, and gas‐phase system are 48, 21, and 61 kJ mol?1, respectively. Our results show the importance of the enveloping framework by stabilizing the reacting species and promoting the reaction.  相似文献   

10.
11.
12.
Syntheses and Crystal Structures of Copper and Silver Complexes containing Dithiophosphinato and Trithiophosphonato Ligands The reactions of CuI and AgI salts with diphenyldithiophosphinic acid trimethylsilylester in the presence of tertiary phosphines yield the complexes [Cu(μ‐S)SPPh2(PR3)]2 (R = Me 1a , iPr 1b ), [Ag(μ‐S)SPPh2(PnPr3)]2 ( 2 ), [Ag(S2PPh2)(PEt3)]2 ( 3 ), and [Cu8(μ8‐S)(S2PPh2)6] ( 4 ). The cage complex [(PhPS3)2Cu4(PMe3)5] ( 5 ) is obtained by the reaction of phenyltrithiophosphonic acid trimethylester. All compounds were structurally characterised by X‐ray crystallography.  相似文献   

13.
Fully utilizing solar energy for catalysis requires the integration of conversion mechanisms and therefore delicate design of catalyst structures and active species. Herein, a MOF crystal engineering method was developed to controllably synthesize a copper–ceria catalyst with well‐dispersed photoactive Cu‐[O]‐Ce species. Using the preferential oxidation of CO as a model reaction, the catalyst showed remarkably efficient and stable photoactivated catalysis, which found practical application in feed gas treatment for fuel cell gas supply. The coexistence of photochemistry and thermochemistry effects contributes to the high efficiency. Our results demonstrate a catalyst design approach with atomic or molecular precision and a combinatorial photoactivation strategy for solar energy conversion.  相似文献   

14.
15.
The nickel‐promoted Cu‐containing catalysts (CuxNiy‐MgAlO) for furfural (FFR) hydrogenation were prepared from the hydrotalcite‐like precursors, and characterized by X‐ray powder diffraction, inductively‐coupled plasma atomic emission spectroscopy, N2 adsorption‐desorption, UV‐Vis diffuse reflectance spectra and temperature‐programmed reduction with H2 in the present work. The obtained catalysts were observed to exhibit a better catalytic property than the corresponding Cu‐MgAlO or Ni‐MgAlO samples in FFR hydrogenation, and the CuNi‐MgAlO catalyst with the actual Cu and Ni loadings of 12.5 wt% and 4.5 wt%, respectively, could give the highest FFR conversion (93.2%) and furfuryl alcohol selectivity (89.2%). At the same time, Cu0 species from the reduction of Cu2+ ions in spinel phases were deduced to be more active for FFR hydrogenation.  相似文献   

16.
Understanding how a photocatalyst modulates its oxidation state, size, and structure during a photocatalytic reaction under operando conditions is strongly limited by the mismatch between (catalyst) volume sampled by light and, to date, the physicochemical techniques and probes employed to study them. A synchrotron micro‐beam X‐ray absorption spectroscopy study together with the computational simulation and analysis (at the X‐ray cell) of the light‐matter interaction occurring in powdered TiO2‐based monometallic Cu, Ni and bimetallic CuNi catalysts for hydrogen production from renewables was carried out. The combined information unveils an unexpected key catalytic role involving the phase contact between the reduced and oxidized non‐noble metal phases in all catalysts and, additionally, reveals the source of the synergistic Cu‐Ni interaction in the bimetallic material. The experimental method is applicable to operando studies of a wide variety of photocatalytic materials.  相似文献   

17.
A Cu‐catalyzed diastereo‐ and enantioselective borylative coupling reaction of 1,3‐dienes with imines was realized. Branched homoallylic amines are readily prepared in a syn‐selective manner with high regio‐, diastereo‐ and enantioselectivity. Moreover, these three‐component coupling reactions feature good functional‐group compatibility and easy access to the substrates and catalyst.  相似文献   

18.
19.
The efficiency and selectivity of Cu‐catalyzed allylic acetoxylation of alkene in different solvent systems is improved by the presence of different metallic salts in the reaction medium. The methodology is particularly well employed for the direct allylic acetoxylation of Δ5‐steroids at 7‐position, for which the resulting acetoxylated product obtained was exclusively α‐isomer. Excellent yield was achieved (up to 90%) under optimized conditions, while significantly reducing the costs and environmental hazards and increasing the yield as compared to the other previously reported methods.  相似文献   

20.
Cu‐ or Fe‐based catalyst systems have been reported to selectively catalyze the N,N‐diarylation or N‐monoarylation of benzoxazoles ring‐opening with aryl iodides in the absence of additional added ligand in polyethylene glycol under an inert atmosphere. Two types of coupling products (triphenylamines and diphenylamines) have been examined and the reaction routes can be simply controlled by changing the metal salts (Cu or Fe) as catalyst. A range of substrates have been investigated for the diverse reactions, and the corresponding arylation products were achieved in good to high yields. This selective, low‐cost, and environmentally friendly protocol displays great potential for replacing existing methodologies as well as extending the synthetic applications of benzoxazoles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号