首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Herein we report the synthesis and photophysical and supramolecular properties of a novel three‐dimensional capsule‐like hexa‐peri‐hexabenzocoronene (HBC)‐containing carbon nanocage, tripodal‐[2]HBC, which is the first synthetic model of capped zigzag [12,0] carbon nanotubes (CNTs). Tripodal‐[2]HBC was synthesized by the palladium‐catalyzed coupling of triboryl hexabenzocoronene and L‐shaped cyclohexane units, followed by nickel‐mediated C−Br/C−Br coupling and subsequent aromatization of the cyclohexane moieties. The physical properties of tripodal‐[2]HBC and its supramolecular host–guest interaction with C70 were further studied by UV/Vis and fluorescence spectroscopy. Theoretical calculations revealed that the strain energy of tripodal‐[2]HBC was as high as 55.2 kcal mol−1.  相似文献   

2.
Herein we report the organoplatinum‐mediated bottom‐up synthesis, characterization, and properties of a novel large π‐extended carbon nanoring based on a nanographene hexa‐peri ‐hexabenzocoronene (HBC) building unit. This tubular structure can be considered as an example of the longitudinal extension of the cycloparaphenylene scaffold to form a large π‐extended carbon nanotube (CNT) segment. The cyclic tetramer of a tetramesityl HBC ([4]CHBC) was synthesized by the reaction of a 2,11‐diborylated hexa‐peri ‐hexabenzocoronene with a platinum complex, followed by reductive elimination. The structure of this tubular molecule was further confirmed by physical characterization. Theoretical calculations indicate that the strain energy of this nanoring is as high as 49.18 kcal mol−1. The selective supramolecular host–guest interaction between [4]CHBC and C70 was also investigated.  相似文献   

3.
Herein we report the organoplatinum‐mediated bottom‐up synthesis, characterization, and properties of a novel large π‐extended carbon nanoring based on a nanographene hexa‐peri ‐hexabenzocoronene (HBC) building unit. This tubular structure can be considered as an example of the longitudinal extension of the cycloparaphenylene scaffold to form a large π‐extended carbon nanotube (CNT) segment. The cyclic tetramer of a tetramesityl HBC ([4]CHBC) was synthesized by the reaction of a 2,11‐diborylated hexa‐peri ‐hexabenzocoronene with a platinum complex, followed by reductive elimination. The structure of this tubular molecule was further confirmed by physical characterization. Theoretical calculations indicate that the strain energy of this nanoring is as high as 49.18 kcal mol−1. The selective supramolecular host–guest interaction between [4]CHBC and C70 was also investigated.  相似文献   

4.
An imidazolium‐modified hexa‐peri‐hexabenzocoronene derivative (HBC‐C11‐MIM[Cl?]) was designed and synthesized as a stabilizer to fabricate reduced graphene oxide (RGO). The resulting RGO/HBC‐C11‐MIM[Cl?] hybrid shows excellent dispersivity (5.0 mg mL?1) and stability in water. RGO/HBC‐C11‐MIM[Cl?] was comprehensively characterized by using atomic force microscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy, thermogravimetric analysis, and Raman spectroscopy, thus revealing that one HBC‐C11‐MIM[Cl?] group can stabilize about 178 carbon atoms on the graphene sheets. The obtained hybrid film exhibits a high conductivity of 286 S m?1. Furthermore, the HBC‐C11‐MIM[Cl?]‐modified RGO sheets can be readily dispersed in polar organic solvents upon exchange of the hydrophilic Cl? ions for hydrophobic bis(trifluoromethylsulfonyl) amide (NTf2?) ions.  相似文献   

5.
Mixtures of N‐alkyl pyridinium compounds [py‐N‐(CH2)nOC6H3‐3,5‐(OMe)2]+(X?) ( 1b Cl: n=10, X=Cl; 1c Br: n=12, X=Br) and α‐cyclodextrin (α‐CD) form supramolecular hydrogels in aqueous media. The concentrations of the two components influences the sol–gel transition temperature, which ranges from 7 to 67 °C. Washing the hydrogel with acetone or evaporation of water left the xerogel, and 13C CP/MAS NMR measurements, powder X‐ray diffraction (XRD), and scanning electron microscopy (SEM) revealed that the xerogel of 1b Cl (or 1c Br) and α‐CD was composed of pseudorotaxanes with high crystallinity. 13C{1H} and 1H NMR spectra of the gel revealed the detailed composition of the components. The gel from 1b Cl and α‐CD contains the corresponding [2]‐ and [3]pseudorotaxanes, [ 1b? (α‐CD)]Br and [ 1b? (α‐CD)2]Br, while that from 1c Br and α‐CD consists mainly of [3]pseudorotaxane [ 1c? (α‐CD)2]Br. 2D ROESY 1H NMR measurements suggested intermolecular contact of 3,5‐dimethoxyphenyl and pyridyl end groups of the axle component. The presence of the [3]pseudorotaxane is indispensable for gel formation. Thus, intermolecular interaction between the end groups of the axle component and that between α‐CDs of the [3]pseudorotaxane contribute to formation of the network. The supramolecular gels were transformed into sols by adding denaturing agents such as urea, C6H3‐1,3,5‐(OH)3, and [py‐NnBu]+(Cl?).  相似文献   

6.
Hexa‐peri‐hexabenzocoronene (HBC) is a discotic‐shaped conjugated molecule with strong π–π stacking property, high intrinsic charge mobility, and good self‐assembly properties. For a long time, however, organic photovoltaic (OPV) solar cells based on HBC demonstrated low power conversion efficiencies (PCEs). In this study, two conjugated terpolymers, poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5′‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PCDTBT)‐ 5 HBC and PCDTBT‐ 10 HBC, were synthesized by incorporating different amounts of HBC as the third component into poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5′‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PCDTBT) through Suzuki coupling polymerization. For comparison, the donor–acceptor (D –A) conjugated dipolymer PCDTBT was also synthesized to investigate the effect of HBC units on conjugated polymers. The HBC‐containing polymers exhibited higher thermal stabilities, broader absorption spectra, and lower highest‐occupied molecular orbital (HOMO) energy levels. In particular, the field‐effect mobilities were enhanced by more than one order of magnitude after the incorporation of HBC into the conjugated polymer backbone on account of increased interchain π–π stacking interactions. The bulk heterojunction (BHJ) polymer solar cells (PSCs) fabricated with the polymers as donor and PC71BM as acceptor demonstrated gradual improvement of open‐circuit voltage (VOC) and short‐circuit current (JSC) with the increase in HBC content. As a result, the PCEs were improved from 3.21 % for PCDTBT to 3.78 % for PCDTBT‐ 5 HBC and then to 4.20 % for PCDTBT‐ 10 HBC.  相似文献   

7.
Donor–acceptor (D–A) structures were obtained by alternating arrays of hexa‐peri‐hexabenzocoronene (HBC) and benzo[c][1,2,5]thiadiazole (BTZ). Optoelectronic investigations revealed a charge transfer due to strong push–pull interactions. 2 D wide‐angle X‐ray scattering (WAXS) data indicated an arrangement in liquid‐crystalline columnar assemblies, in which the π‐stacking distances and molecular orientation depend on the number of HBC units in the molecules.  相似文献   

8.
The nature of halogen bonding is examined via experimental and computational characterizations of a series of associates between electrophilic bromocarbons R? Br (R? Br=CBr3F, CBr3NO2, CBr3COCBr3, CBr3CONH2, CBr3CN, etc.) and bromide anions. The [R? Br, Br?] complexes show intense absorption bands in the 200–350 nm range which follow the same Mulliken correlation as those observed for the charge‐transfer associates of bromide anions with common organic π‐acceptors. For a wide range of the associates, intermolecular R? Br???Br? separations decrease and intramolecular C? Br bond lengths increase proportionally to the Br?→R? Br charge transfer; and the energies of R? Br???Br? bonds are correlated with the linear combination of orbital (charge‐transfer) and electrostatic interactions. On the whole, spectral, structural and thermodynamic characteristics of the [R? Br, Br?] complexes indicate that besides electrostatics, the orbital (charge‐transfer) interactions play a vital role in the R? Br???Br? halogen bonding. This indicates that in addition to controlling the geometries of supramolecular assemblies, halogen bonding leads to electronic coupling between interacting species, and thus affects reactivity of halogenated molecules, as well as conducting and magnetic properties of their solid‐state materials.  相似文献   

9.
Carbon‐atom extrusion from the ipso‐position of a halobenzene ring (C6H5X; X=F, Cl, Br, I) and its coupling with a methylene ligand to produce acetylene is not confined to [LaCH2]+; also, the third‐row transition‐metal complexes [MCH2]+, M=Hf, Ta, W, Re, and Os, bring about this unusual transformation. However, substrates with substituents X=CN, NO2, OCH3, and CF3 are either not reactive at all or give rise to different products when reacted with [LaCH2]+. In the thermal gas‐phase processes of atomic Ln+ with C7H7Cl substrates, only those lanthanides with a promotion energy small enough to attain a 4fn5d16s1 configuration are reactive and form both [LnCl]+ and [LnC5H5Cl]+. Branching ratios and the reaction efficiencies of the various processes seem to correlate with molecular properties, like the bond‐dissociation energies of the C?X or M+?X bonds or the promotion energies of lanthanides.  相似文献   

10.
The doping of graphene molecules by borazine (B3N3) units may modify the electronic properties favorably. Therefore, the influence of the substitution of the central benzene ring of hexa‐peri‐hexabenzocoronene (HBC, C42H18) by an isoelectronic B3N3 ring resulting in C36B3N3H18 (B3N3HBC) is investigated by computational methods. For comparison, the isoelectronic and isosteric all‐B/N molecule B21N21H18 (termed BN) and its carbon derivative C6B18N18H18 (C6BN), obtained by substitution of a central B3N3 by a C6 ring, are also studied. The substitution of C6 in the HBC molecule by a B3N3 unit results in a significant change of the computed IR vibrational spectrum between 1400 and 1600 cm?1 due to the polarity of the borazine core. The properties of the BN molecule resemble those of hexagonal boron nitride, and substitution of the central B3N3 ring by C6 changes the computed IR vibrational spectrum only slightly. The allowed transitions to excited states associated with large oscillator strengths shift to higher energy upon going from HBC to B3N3HBC, but to lower energy upon going from BN to C6BN. The possibility of synthesis of B3N3HBC from hexaphenylborazine (HPB) using the Scholl reaction (CuCl2/AlCl3 in CS2) is investigated. Rather than the desired B3N3HBC an insoluble and X‐ray amorphous polymer P is obtained. Its analysis by IR and 11B magic angle spinning NMR spectroscopy reveals the presence of borazine units. The changes in the 11B quadrupolar coupling constant CQ, asymmetry parameter η, and isotropic chemical shift δiso(11B) with respect to HPB are in agreement with a structural model that includes B3N3HBC‐derived monomeric units in polymer P. This indicates that both intra‐ and intermolecular cyclodehydrogenation reactions take place during the Scholl reaction of HPB.  相似文献   

11.
Novel hexa‐peri‐hexabenzocoronene (HBC) derivatives, FHBC and FHBC*, which carry perfluoroalkyl segments on one side of the HBC core and long alkyl tails on the other, were synthesized. Their perfluoroalkyl segments are highly solvated in C6F6 (solvophilic effect) and do not assemble, whereas in CH2Cl2, they are excluded (solvophobic effect) and assemble together consequently. For example, the use of C6F6 and CH2Cl2 as assembling media for FHBC leads to the selective formation of single‐ and multi‐walled nanotubes, respectively. When a higher monomer concentration is applied in CH2Cl2, multi‐walled nanotubes with a larger number of walls result. FHBC in CH2Cl2 self‐assembles rather slowly, thereby allowing for the observation of coil‐on‐tube structures, which are possible intermediates for the stepwise radial growth of the nanotubular wall. Casting of the multi‐walled nanotubes onto a quartz plate yields a superhydrophobic thin film with a water contact angle of 161±2°.  相似文献   

12.
A cyclophane is reported incorporating two units of a heptagon‐containing extended polycyclic aromatic hydrocarbon (PAH) analogue of the hexa‐peri‐hexabenzocoronene (HBC) moiety (hept‐HBC). This cyclophane represents a new class of macrocyclic structures that incorporate for the first time seven‐membered rings within extended PAH frameworks. The saddle curvature of the hept‐HBC macrocycle units induced by the presence of the nonhexagonal ring along with the flexible alkyl linkers generate a cavity with shape complementarity and appropriate size to enable π interactions with fullerenes. Therefore, the cyclophane forms host–guest complexes with C60 and C70 with estimated binding constants of Ka=420±2 m ?1 and Ka=(6.49±0.23)×103 m ?1, respectively. As a result, the macrocycle can selectively bind C70 in the presence of an excess of a mixture of C60 and C70.  相似文献   

13.
A 2 : 4 mixture of tetrakis[4‐(4‐pyridyl)phenyl]cavitand ( 1 ) or tetrakis[4‐(4‐pyridyl)phenylethynyl]cavitand ( 2 ) and Pd(dppp)(OTf)2 self‐assembles into a homocapsule { 1 2 ? [Pd(dppp)]4}8+ ? (TfO?)8 ( C1 ) or { 2 2 ? [Pd(dppp)]4}8+ ? (TfO?)8 ( C2 ), respectively, through Pd?Npy coordination bonds. A 1 : 1 : 4 mixture of 1 , 2 , and Pd(dppp)(OTf)2 produced a mixture of homocapsules C1 , C2 , and a heterocapsule { 1 ? 2 ? [Pd(dppp)]4}8+ ? (TfO?)8 ( C3 ) in a 1 : 1 : 0.98 mole ratio. Selective formation (self‐sorting) of homocapsules C1 and C2 or heterocapsule C3 was controlled by guest‐induced encapsulation under thermodynamic control. Applications of Pd?Npy coordination capsules with the use of 1 were demonstrated. Capsule C1 serves as a guard nanocontainer for trans‐4,4′‐diacetoxyazobenzene to protect against the trans‐to‐cis photoisomerization by encapsulation. A chiral capsule { 1 2 ? [Pd((R)‐BINAP)]4}8+ ? (TfO?)8 ( C5 ) was also constructed. Capsule C5 induces supramolecular chirality with respect to prochiral 2,2′‐bis(alkoxycarbonyl)‐4,4′‐bis(1‐propynyl)biphenyls by diastereomeric encapsulation through the asymmetric suppression of rotation around the axis of the prochiral biphenyl moiety.  相似文献   

14.
Four new diorganotin(IV) complexes of N‐(5‐halosalicylidene)tryptophane, R2Sn[5‐X‐2‐OC6H3CH?NCH(CH2Ind)COO] [Ind = 3‐indolyl; R, X = Et, Cl ( 1 ); Et, Br( 2 ); n‐Bu, Cl ( 3 ); n‐Bu, Br ( 4 )], were synthesized and characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectra. The crystal structures of complexes 1 – 3 were determined by X‐ray single crystal diffraction and showed that the tin atoms are in a distorted trigonal bipyramidal geometry and form five‐ and six‐membered chelate rings with the tridentate ligand. Intermolecular weak interactions in 1–3 link molecules, respectively, into a two‐dimensional array, a one‐dimensional infinite chain and a one‐dimensional double‐chain supramolecular structure. Bioassay results of the compounds indicated that the dibutyltin complexes 3 and 4 have potent in vitro cytotoxic activity against two human tumor cell lines, CoLo205 and Bcap37, while the diethyltin complexes 1 and 2 display weak cytotoxic activity. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The reaction of the organolithium derivative {2, 6‐[P(O)(OEt)2]2‐4‐tert‐Bu‐C6H2}Li ( 1 ‐Li) with [Ph3C]+[PF6] gave the substituted biphenyl derivative 4‐[(C6H5)2CH]‐4′‐[tert‐Bu]‐2′, 6′‐[P(O)(OEt)2]2‐1, 1′‐biphenyl ( 5 ) which was characterized by 1H, 13C and 31P NMR spectroscopy and single crystal X‐ray analysis. Ab initio MO‐calculations reveal the intramolecular O···C distances in 5 of 2.952(4) and 2.988(5)Å being shorter than the sum of the van der Waals radii of oxygen and carbon to be the result of crystal packing effects. Also reported are the synthesis and structure of the bromine‐substituted derivative {2, 6‐[P(O)(OEt)2]2‐4‐tert‐Bu]C6H2}Br ( 9 ) and the structure of the protonated ligand 5‐tert‐Bu‐1, 3‐[P(O)(OEt)2]2C6H3 ( 1 ‐H). The structures of 1 ‐H, 5 , and 9 are compared with those of related metal‐substituted derivatives.  相似文献   

16.
A new tetrazole–metal supramolecular compound, di‐μ‐chlorido‐bis(trichlorido{1‐[(1H‐tetrazol‐5‐yl‐κN2)methyl]‐1,4‐diazoniabicyclo[2.2.2]octane}cadmium(II)), [Cd2(C8H16N6)2Cl8], has been synthesized and structurally characterized by single‐crystal X‐ray diffraction. In the structure, each CdII cation is coordinated by five Cl atoms (two bridging and three terminal) and by one N atom from the 1‐[(1H‐tetrazol‐5‐yl)methyl]‐1,4‐diazoniabicyclo[2.2.2]octane ligand, adopting a slightly distorted octahedral coordination geometry. The bridging bicyclo[2.2.2]octane and chloride ligands link the CdII cations into one‐dimensional ribbon‐like N—H...Cl hydrogen‐bonded chains along the b axis. An extensive hydrogen‐bonding network formed by N—H...Cl and C—H...Cl hydrogen bonds, and interchain π–π stacking interactions between adjacent tetrazole rings, consolidate the crystal packing, linking the poymeric chains into a three‐dimensional supramolecular network.  相似文献   

17.
Synthesis and physicochemical properties of four pyridinium‐based ionic liquids (ILs), N‐propylpyridinium bromide [N‐propylPyr]+[Br], N‐isopropylpyridinium bromide [N‐isopropylPyr]+[Br], N‐propylpyridinium hexafluorophosphate [N‐propylPyr]+[PF6], and N‐isopropylpyridinium hexafluorophosphate [N‐isopropylPyr]+[PF6] are reported. The molecular structures of these compounds were characterized by FT‐IR, 1H, 19F, and 31P NMR, spectroscopy. The thermal properties, conductivity, and solubility of these ionic liquids were also investigated. The effects of propyl and isopropyl alkyl lateral chain at the N‐position of pyridinium cation on the thermal stability, conductivity, and solubility of ionic liquids are discussed. The results obtained confirmed that the ionic liquids based on pyridinium cations exhibit higher decomposition temperature, low melting points, immiscible with water, and their conductivities are mainly influenced by mobility of ions.  相似文献   

18.
Ni‐catalyzed cross‐coupling of unactivated secondary alkyl halides with alkylboranes provides an efficient way to construct alkyl–alkyl bonds. The mechanism of this reaction with the Ni/ L1 ( L1 =transN,N′‐dimethyl‐1,2‐cyclohexanediamine) system was examined for the first time by using theoretical calculations. The feasible mechanism was found to involve a NiI–NiIII catalytic cycle with three main steps: transmetalation of [NiI( L1 )X] (X=Cl, Br) with 9‐borabicyclo[3.3.1]nonane (9‐BBN)R1 to produce [NiI( L1 )(R1)], oxidative addition of R2X with [NiI( L1 )(R1)] to produce [NiIII( L1 )(R1)(R2)X] through a radical pathway, and C? C reductive elimination to generate the product and [NiI( L1 )X]. The transmetalation step is rate‐determining for both primary and secondary alkyl bromides. KOiBu decreases the activation barrier of the transmetalation step by forming a potassium alkyl boronate salt with alkyl borane. Tertiary alkyl halides are not reactive because the activation barrier of reductive elimination is too high (+34.7 kcal mol?1). On the other hand, the cross‐coupling of alkyl chlorides can be catalyzed by Ni/ L2 ( L2 =transN,N′‐dimethyl‐1,2‐diphenylethane‐1,2‐diamine) because the activation barrier of transmetalation with L2 is lower than that with L1 . Importantly, the Ni0–NiII catalytic cycle is not favored in the present systems because reductive elimination from both singlet and triplet [NiII( L1 )(R1)(R2)] is very difficult.  相似文献   

19.
Four copolyfluorenes chemically doped with 0.1 and 1 mol % 3,7‐bis[2‐thiophene‐2‐yl)‐2‐cyanovinyl]phenothiazine ( PFPhT ) or 2,5‐bis[2‐(thiophene‐2‐yl)‐2‐cyanovinyl]thiophene chromophores ( PFThT ) were synthesized using the Suzuki coupling reaction and applied in white‐light‐emitting devices. They were characterized by GPC, elemental analysis, DSC, TGA, optical spectra, and cyclic voltammetry. They exhibited good thermal stability (Td > 420 °C) and moderate glass transition temperatures (>95 °C). The PhT‐Br and ThT‐Br showed PL peaks at 586 and 522 nm (with a shoulder at 550 nm). In film state, PL spectra of the copolymers comprised emissions from the fluorene segments and the chromophores due to incomplete energy transfer. Both monomers exhibited low LUMO levels around ?3.50 to ?3.59 eV, whereas the PhT‐Br owned the higher HOMO level (?5.16 eV) due to its electron‐donating phenothiazine core. Light‐emitting diodes with a structure of ITO/PEDOT:PSS/copolymer/Ca(50 nm)/Al(100 nm) showed broad emission depending on the chromophore contents. The maximum brightness and maximum current efficiency of PFPhT2 ( PFThT1 ) device were 8690 cd/m2 and 1.43 cd/A (7060 cd/m2 and 0.98 cd/A), respectively. White‐light emission was realized by further blending PFPhT2 with poly(9,9‐dihexylfluorene) (w/w = 10/1), with the maximum brightness and maximum current efficiency being 10,600 cd/m2 and 1.85 cd/A. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 833–844, 2009  相似文献   

20.
The carbon–carbon (C?C) bond activation of [n]cycloparaphenylenes ([n]CPPs) by a transition‐metal complex is herein reported. The Pt0 complex Pt(PPh3)4 regioselectively cleaves two C?C σ bonds of [5] CPP and [6]CPP to give cyclic dinuclear platinum complexes in high yields. Theoretical calculations reveal that the relief of ring strain drives the reaction. The cyclic complex was further transformed into a cyclic diketone by using a CO insertion reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号