首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
研究了Cr添加量对V2.1TiNi0.3Crx(x=0,0.2,0.4,0.6)贮氢合金的结构和电化学性能的影响。结果表明,所有合金均由V基固溶体主相和TiNi基第二相组成,且第二相呈网状分布在晶界上,部分呈颗粒状分布于合金主相之中。随着Cr含量增大,合金主相的晶胞体积与合金电极的最大放电容量逐渐减小,而循环稳定性逐渐增加,同时合金电极的动力学性能得到改善。在合金中添加Cr使合金电极的活化性能变差,但添加量的进一步增多对其活化性能影响不大。综合考虑,V2.1TiNi0.3Cr0.4合金的电化学性能最好,最大放电容量可达442.20 mAh·g-1,20次充放电循环后容量保持率达81.91%。  相似文献   

2.
掺硅MlNi5系稀土贮氢合金电化学性能   总被引:6,自引:0,他引:6  
对MlNi3.5Co0.75-xSixAl0.2Mn0.55的显微组织结构及电化学性能进行了系统的研究。当x=0.1,0.2时,合金的放电容量较大、活化速度快、大电流放电容量较高、放电电压稳定。X射线分析和扫描电镜观察表明该系合金由LaNi3与La2Ni7两相组成,且随Si含量的提高,非贮氢相LaNi7相增加。  相似文献   

3.
LaNi5系贮氢合金的软化学合成及其电化学性能研究   总被引:6,自引:0,他引:6       下载免费PDF全文
应用燃烧法制出了约20nm的混合金属氧化物前躯体,用它和CaH2进行还原扩散反应,在850℃反应2h就可制得10μm以下的单相合金粉,如加少量助熔剂,在650℃即可完成还原扩散反应,得到的合金微粒大小只有2μm。这种方法制备的合金比熔炼合金的活化性能更好,850℃温度下反应得到的合金具有比熔炼合金更高的高倍率充放电容量。  相似文献   

4.
Ti0.26Zr0.07V0.24Mn0.1Ni0.33Bx(x=0~0.10)系列合金均有V基固溶体相和C14型Laves相两相组成。添加B可提高Ti0.26Zr0.07V0.24Mn0.1Ni0.33合金的放电容量,Ti0.26Zr0.07V0.24Mn0.1Ni0.33B0.1合金电极在60 mA·g-1电流放电时的放电容量达到476.7 mAh·g-1。B的添加不同程度地降低了合金的高倍率放电性能,使合金电极表面上电化学反应的电荷转移电阻(R ct)显著增加,交换电流密度(I0)显著降低。添加B可显著改善Ti0.26Zr0.07V0.24Mn0.1Ni0.33合金电极的高温放电性能,Ti0.26Zr0.07V0.24Mn0.1Ni0.33B0.025合金电极在343 K高温下其放电容量达到525.6 mAh·g-1。  相似文献   

5.
Ti0.26Zr0.07V0.24Mn0.1Ni0.33Bx(x=0~0.10)系列合金均有V基固溶体相和C14型Laves相两相组成。添加B可提高Ti0.26Zr0.07V0.24 Mn0.1Ni0.33合金的放电容量, Ti0.26Zr0.07V0.24Mn0.1Ni0.33B0.1合金电极在60 mA·g-1电流放电时的放电容量达到476.7 mAh·g-1.B的添加不同程度地降低了合金的高倍率放电性能, 使合金电极表面上电化学反应的电荷转移电阻(Rct)显着增加, 交换电流密度(I0)显着降低。添加B可显着改善Ti0.26Zr0.07V0.24Mn0.1Ni0.33合金电极的高温放电性能, Ti0.26Zr0.07V0.24Mn0.1Ni0.33B0.025合金电极在343 K高温下其放电容量达到525.6 mAh·g-1.  相似文献   

6.
掺硅MlNi_5系稀土贮氢合金电化学性能   总被引:2,自引:0,他引:2  
  相似文献   

7.
根据工作环境的要求,镍-金属氢化物电池不仅要满足电源在室温时的工作需要,还应满足在不同工作条件下的需求,如高温、低温等,这就需要电极在较宽的温度范围内具有优异的性能。改性的AB5合金电极在343K时的放电容量能达到265mAh·g-1左右(截止电压为0.5V,相对于Hg/HgO参比电极)[  相似文献   

8.
添加元素对AB2型Laves相合金电化学性能的影响   总被引:3,自引:0,他引:3  
比较系统地研究了AB2型Laves相合金Zr0.9Ti0.1Ni0.1Mn0.7V0.3M0.1(M=None,Ni.Mn.V.Co.Cr.Al.Fe,Mo.Si.C.Zn,Cu和B)的相结构和电化学性能以及高温和低温放电性能等.结果表明.14种合金均具有六方C14型Laves相的主相晶体结构.同时,含有少量立方Cl5型Laves相和一些由Zr9Ni11及ZrNi组成的非Laves相;添加V和Mn可提高AB2合金的放电容量;添加B和Mn则显著提高了AB2合金的高倍率放电性能和低温放电容量;添加Al,C.Si和Co对合金电极的循环稳定性改善明显;而Mn.Ni.V.Fe.Cu.Mo和B等却不同程度地降低了循环稳定性;添加Si.Mo,V,Cr和Al可明显改善合金电极的自放电性能;添加Si.Cr.V可显著改善AB2合金电极的高温放电性能.讨论了各种添加元素影响合金性能的可能原因.  相似文献   

9.
在贮氢合金MmNi3.8Co0.5Mn0.4Al0.3(Mm为混合希土)粉末表面分别进行化学镀Cu,Co,Ni,Ni-Co,Ni-Sn,Ni-W。结果表明不同化学镀对合金贮氢性能有很大影响。  相似文献   

10.
研究了5种稀土元素部分取代V对Ti0.26Zr0.07V0..24Mn0.1Ni0.33合金的微观结构和电化学性能的影响。结果表明,Ti0.26Zr0.07V0.24Mn0.1Ni0.33和Ti0.26Zr0.07V0.24-xMn0.1Ni0.33RExx=0.005;RE=La,Ce,Nd,Ho,Y)均由体心立方结构的钒基固溶体相和六方结构的C14Laves相组成。在合金中加入稀土元素,会使合金中两相的晶胞体积同时增大。稀土元素部分取代V均改善了合金电极的活化性能。La和Nd元素取代后,合金电极的最大放电容量明显增加,而Ce的取代提高了合金电极的循环稳定性。Ce,Nd,Ho,Y均改善了合金电极的倍率放电性能。合金电极在高温状态下表现出了良好的放电性能,其中Nd在333K时放电容量可达550.4mAh·g-1。稀土元素对荷电保持率的影响各异。  相似文献   

11.
本文研究了稀土元素对Ti0.26Zr0.07V0.24Mn0.1Ni0.33合金的微观结构和电化学性能的影响。结果表明,Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce,Nd,Gd;x=0.01)合金均有V基固溶体相和C14型Laves相两相组成。合金中两相的晶格参数随加入稀土元素的不同而发生变化。稀土元素部分取代可改善合金电极的活化性能。然而,对合金电极的其他性能影响因元素种类不同而各异。Ce取代增大了合金电极的最大放电容量,Nd元素可以有效改善合金的高倍率放电性能。工作温度对合金电极的放电容量影响较大,Nd和Gd在333 K最大放电容量可达426和465 mAh.g-1。过高的温度使其循环容量衰减加剧。  相似文献   

12.
研究了5种稀土元素部分取代V对Ti0.26Zr0.07V0..24Mn0.1Ni0.33合金的微观结构和电化学性能的影响。结果表明,Ti0.26Zr0.07V0.24Mn0.1Ni0.33和Ti0.26Zr0.07V0.24-xMn0.1Ni0.33REx(x=0.005;RE=La,Ce,Nd,Ho,Y)均由体心立方结构的钒基固溶体相和六方结构的C14 Laves相组成。在合金中加入稀土元素,会使合金中两相的晶胞体积同时增大。稀土元素部分取代V均改善了合金电极的活化性能。La和Nd元素取代后,合金电极的最大放电容量明显增加,而Ce的取代提高了合金电极的循环稳定性。Ce,Nd,Ho,Y均改善了合金电极的倍率放电性能。合金电极在高温状态下表现出了良好的放电性能,其中Nd在333 K时放电容量可达550.4 mAh·g-1。稀土元素对荷电保持率的影响各异。  相似文献   

13.
采用XRD、FESEM-EDS、ICP及EIS等方法研究了Ti0.17Zr0.08V0.34Nb0.01Cr0.1Ni0.3氢化物电极合金微观结构和电化学性能。X射线衍射分析表明:该合金由体心立方结构(bcc)的V基固溶体主相和少量六方结构的C14型Laves相组成;FESEM及EDS分析表明:V基固溶体主相形成树枝晶,C14型Laves相呈网格状围绕着树枝晶的晶界,元素在两相中的分布呈现镜像关系。电化学性能测试结果表明:该合金的氢化物电极在303~343 K较宽的温度区间内,表现出较高的电化学容量,在303 K和343 K时,电化学容量分别为337.0 mAh·g-1和327.9 mAh·g-1。在303 K循环100周后,容量为282.7 mAh·g-1。ICP分析结果表明,氢化物电极在充放电循环过程中,V及Zr元素向KOH电解质中的溶出较为严重。EIS研究表明,金属氢化物电极表面电化学反应的电荷转移电阻(RT)随循环次数的增加而增加,相应的交换电流密度则随循环次数的增加而降低。氢化物电极循环过程中RT的增大以及V和Zr元素的溶解,可能是导致电极容量衰减的主要原因。  相似文献   

14.
退火处理对快淬贮氢合金显微组织及电化学性能的影响   总被引:9,自引:0,他引:9  
研究了退火处理对快淬贮氢合金电化学性能的影响。分析并讨论了退火处理的影响机制。快淬贮氢合金经退火处理后,P-C-T平台更为平坦,活化性能得到改善,最大放电容量和循环稳定性提高。通过XRD,SEM,DTA分析发现,退火处理后合金单胞体积有所增大,内应力降低,合金成分趋于均匀,从而使合金的电化学性能得到改善。加热过程中,合金在温度高于696℃发生再结晶。  相似文献   

15.
稀土对Ti-Zr-V-Cr-Ni合金微观结构和电化学性能的影响   总被引:2,自引:1,他引:2  
研究了稀土对Ti0.17Zr0.08V0.35Cr0.1Ni0.3合金的微观结构和电化学性能的影响。结果表明,Ti0.17Zr0.08V0.35Cr0.1Ni0.3和Ti0.17Zr0.08V0.35Cr0.1Ni0.3RE0.05(RE分别代表La,Ce,Pr,Nd和混合稀土)合金均由主相为体心立方结构的钒基固溶体相和少量六方结构的C14 Laves相组成;在合金中加入稀土元素,同时增大合金中两相的晶胞体积。镧和其他金属元素结合形成新相分布于合金中。添加稀土元素可以改善合金电极的活化性能。镧的添加降低了合金电极在60 mA.g-1下的最大放电容量,但对其理论放电容量几乎没有影响;合金的放电容量对温度的变化比较敏感,过高的温度使其容量发生衰减,含稀土元素的合金电极在323 K温度下放电容量达到最大值。稀土对合金电极的荷电保持率产生不利影响,镧、钕和混合稀土的添加能够改善合金电极的倍率放电性能。  相似文献   

16.
为提高La-Mg-Ni基储氢合金La0.73Ce0.18Mg0.09Ni3.20Al0.21Mn0.10Co0.60的电化学性能,由5-溴水杨酸和苯胺合成了一种席夫碱作为表面改性剂,对储氢合金进行表面处理。 从紫外与红外图谱可知,合成了目标席夫碱。 添加1%席夫碱后,合金的相结构没有改变。 与未添加席夫碱的合金电极相比,电极的最大放电容量略有下降,但50次充放电循环后合金电极的容量保持率有较大幅度提高,添加5%席夫碱的电极容量保持率从63%提高到75%,高倍率放电性能也有增加。 经表面处理后,合金电极的交换电流密度I0与极限电流密度IL均有大幅度提高,动电位极化曲线也表明合金电极的抗腐蚀能力变强。 以上结果均表明,添加少量席夫碱有助于改善储氢合金电极的电化学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号