首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six Schiff-bases HL1-HL4, L5 and L6 [HL1 = 2,6-bis[1-(2-aminoethyl)pyrolidine-iminomethyl]-4-methyl-phenol, HL2 = 2,6-bis[1-(2-aminoethyl)piperidine-iminomethyl]-4-methyl-phenol, HL3 = N-{1-(2-aminoethyl)pyrolidine}salicylideneimine, HL4 = N-{1-(2-aminoethyl)piperidine}salicylideneimine, L5 = 2-benzoyl pyridine-N-{1-(2-aminoethyl)pyrolidine}, L6 = 2-benzoylpyridine-N-{1-(2-aminoethyl)piperidine}] have been synthesized and characterized. Zn(II) complexes of those ligands have been prepared by conventional sequential route as well as by template synthesis. The same complexes are obtained from the two routes as evident from routine physicochemical characterizations. All the Schiff-bases exhibit photoluminescence originating from intraligand (π–π*) transitions. Metal mediated fluorescence enhancement is observed on complexation of HL1-HL4 with Zn(II), whereas metal mediated fluorescence quenching occurs in Zn(II) complexes of L5 and L6.  相似文献   

2.
Mononuclear and Multiply Bridged Dinuclear Phthalocyaninates(1–/2–) of Yttrium by Solvent Controlled Condensation; Small Solvent Clusters as Ligands Green chlorophthalocyaninato(2–)yttrium(III), [Y(Cl)pc2–] forms when yttrium chloride is heated with o‐phthalonitrile in 1‐chloronaphthalene. Black cis‐di(chloro)phthalocyaninato(1‐)yttrium(III), cis[Y(Cl)2pc] is obtained as a stable intermediate by partial reduction. Both complexes are soluble in many O‐donor solvents and pyridine. The solubility in water is remarkable: [Y(Cl)pc2–] dissolves with green, cis[Y(Cl)2pc] with red‐violet color. Typical absorptions of the pc2– ligand are observed at 14800 and 29700 cm–1. A solvent dependent monomer‐dimer equilibrium is found for the pc radical. The monomer with absorptions at 12100 and 19900 cm–1 is favored in non‐polar solvents, while in polar solvents the dimer with absorptions at 8700, 13200 and 18600 cm–1 is preferred. cis‐Tri(dimethylformamide)chlorophthalocyaninato(2–)yttrium(III) etherate ( 1 ) crystallises from a solution of [Y(Cl)pc2–] in MeOH/dmf, cis‐tetra(dimethylsulfoxide)phthalocyaninato(2–)yttrium(III) chloride etherate methanol disolvate ( 2 ) from thf/dmso, μ‐di(chloro)‐μ‐di〈di(pyridine)(μ‐water)〉di(phthalocyaninato(2–)‐ yttrium(III)) ( 5 ) from py, and cis‐(chloro)pyridine(triphenylphosphine oxide)phthalocyaninato(2–)yttrium(III) semi‐etherate ( 3 ) is obtained from a solution of [Y(Cl)pc2–] and triphenylphosphine oxide in py. 1 condenses in MeOH yielding a (1 : 1)‐mixture ( 4 ) of μ‐di(chloro)di(〈trans‐(diwaterdimethanol)〉〈dimethanol〉phthalocyaninato(2–)yttrium(III)) ( 4 a ) and μ‐di(chloro)di(dimethylformamide〈dimethanol〉phthalocyaninato(2–)yttrium(III)) ( 4 b ); co‐ordinatively bound solvent clusters are in brakets. The structures of 1 – 5 have been established by X‐ray crystallography. Apart from 3 with hepta‐co‐ordinated yttrium, the metal ion prefers octa‐co‐ordination, and the bond arrangement around Y3+ is always a distorted quadratic antiprism. In the dinuclear complexes obtained by solvent controlled condensation both antiprisms share an edge by two μ‐Cl atoms in 4 , while in 5 the antiprisms are face‐shared by two trans positioned μ‐Cl atoms and μ‐O atoms, respectively. In 5 , the bent b〈{py}2(μ‐H2O)〉 cluster is stabilised by a combined interplanar bonding of pyridine by short N…H–O bonds (d(N…O) = 2.664(7) Å; 2.81(2) Å) and strong van‐der‐Waals interactions with the ecliptic pc2– ligands. 4 a and 4 b contain the dimeric methanol cluster 〈(MeOH)2〉, and 4 a in addition the cyclic heterotetrameric trans‐diwaterdimethanol cluster, transc〈(H2O)2(MeOH)2〉. The neutral clusters co‐ordinatively bound to the Y atom are compared with structurally established cluster‐anions of type 〈(OMe)(MeOH)〉, linear l〈(OMe)(MeOH)2, cyclic c〈(OH)3(H2O)33–, b〈{H2O}2(μ‐O)〉2–, and b{H2O}2(μ‐F)〉.  相似文献   

3.
The potassium dihydrotriazinide K(LPh,tBu) ( 1 ) was obtained by a metal exchange route from [Li(LPh,tBu)(THF)3] and KOtBu (LPh,tBu = [N{C(Ph)=N}2C(tBu)Ph]). Reaction of 1 with 1 or 0.5 equivalents of SmI2(thf)2 yielded the monosubstituted SmII complex [Sm(LPh,tBu)I(THF)4] ( 2 ) or the disubstituted [Sm(LPh,tBu)2(THF)2] ( 3 ), respectively. Attempted synthesis of a heteroleptic SmII amido‐alkyl complex by the reaction of 2 with KCH2Ph produced compound 3 due to ligand redistribution. The YbII bis(dihydrotriazinide) [Yb(LPh,tBu)2(THF)2] ( 4 ) was isolated from the 1:1 reaction of YbI2(THF)2 and 1 . Molecular structures of the crystalline compounds 2 , 3· 2C6H6 and 4· PhMe were determined by X‐ray crystallography.  相似文献   

4.
The synthesis and molecular structure of trans‐{bis[(acetato‐κO)‐(2‐(1‐aziridinyl)ethanol‐κ2N,O)]}cobalt(II) ( 4 ) and cis‐{bis[chlorido‐(2‐(1‐aziridinyl)ethanol‐κ2N,O)]}cobalt(II) ( 5 ) is reported. Both neutral chelate complexes are prepared from the corresponding CoII salt [CoX2; X = OAc ( 1 ), Cl ( 2 )] and 2‐(1‐aziridinyl)ethanol (azolH, 3 ) in dry dichloromethane. A third, ionic complex, cis‐{bis[aqua‐(2‐(1‐aziridinyl)ethanol‐κ2N,O)]}cobalt(II) diacetate ( 6 ) is formed from 4 in the presence of water and could be crystallized from aqueous dichloromethane. In all cases, 2‐(1‐aziridinyl)ethanol is coordinating as bidentate chelate ligand by the nitrogen and oxygen atom of the aziridinyl and hydroxy moiety. After purification, the compounds have been fully characterized using IR spectroscopy and FAB+‐MS. The single‐crystal X‐ray structure analysis revealed a distorted octahedral geometry for all complexes with either trans ( 4 ) or cis ( 5 , 6 ) configuration.  相似文献   

5.
The synthesis of chiral 12-phenyi(2H)dodecanoic acids as metabolic probes for the evaluation of the stereo-chemical course of the biosynthesis of 1-alkerses from fatty acids in plants and insects is described. The diastereoisomeric (2R, 3R)- or (2S, 3S)-12-phenyl(2,3?2H2)dodecanoic acids 11 are obtained in high chemical and optical yield (>97% e.e.) from the readily available (E)-12-phenyl(2,3-2H2)dodec-2-enoic acid ( 10 ) or (E)-12-phenyldodec-2-enoic acid ( 10a ) by microbial reduction with wet packed cells of Clostridium tyrobutyricum in either 2H2O or H2O buffer. (2R)- and (2S)-12-phenyl(2?2H)dodecanoic acids 9 (>97% e.e.) are accessible from the allylic alcohol 6 via Sharpless epoxidation with (+)-L- or (?)-D-diethyl tartrate, Synthetic routes to the (E)- and (Z)-11-phenyl(1?2H) undec-1-enes 16 and 16a as reference compounds are also included.  相似文献   

6.
7.
Two new pheophytins, bidenphytins A ( 1 ) and B ( 2 ), with peroxide functionalities on ring E, were isolated from Biden pilosa Linn . var. radiata Sch . Bip ., a popular Taiwanese folk medicine. Also isolated were the following six known compounds: pheophytin a ( 3 ), (132R)‐132‐hydroxypheophytin a ( 4 ), (132S)‐132‐hydroxypheophytin a ( 5 ), (132R)‐132‐hydroxypheophytin b ( 6 ), (132S)‐132‐hydroxypheophytin b ( 7 ), and aristophyll‐C ( 8 ). Their structures were elucidated by spectroscopic methods (UV, IR, 1D‐ and 2D‐NMR) and by mass spectrometry (HR‐FAB‐MS). Possible biosynthetic pathways for 1 and 2 are proposed.  相似文献   

8.
Mononitrosyl and trans ‐Dinitrosyl Complexes of Phthalocyaninates of Manganese and Rhenium Tetra(n‐butyl)ammonium or di(triphenylphosphane)iminium nitrosylacidophthalocyaninato(2–)manganate, (cat)[Mn(NO)(X)pc2–] (X = ONO, NCO, N3; cat = nBu4N, PNP) is prepared from acidophthalocyaninato(2–)manganese, [Mn(X)pc2–], (cat)NO2 and (nBu4N)BH4 in CH2Cl2 or from nitrosylphthalocyaninato(2–)manganese, [Mn(NO)pc2–] and (nBu4N)X (X = ONO, NCO, N3, NCS) at T < 120 °C, respectively. [Mn(NO)(X)pc2–] dissociates in methanol, and [Mn(NO)pc2–] precipitates. Nitrito(O)phthalocyaninato(2–)manganese, (cat)NO2 and hydrogensulfide yield trans‐di(nitrosyl)phthalocyaninato(2–)manganate, trans[Mn(NO)2pc2–], isolated as red violet (PNP) and (nBu4N) complex salt. Nitrosyl(triphenylphosphane oxide)phthalocyaninato(2–)manganese, [Mn(NO)(OPPh3)pc2–] is obtained by addition of OPPh3 to [Mn(NO)pc2–] at 200 °C. Di(triphenylphosphane)phthalocyaninato(2–)rhenium(II) and (PNP)NO2 in CH2Cl2 or in molten (PNP)NO2 and PPh3 at 100 °C yields green blue l‐di(triphenylphosphane)iminium nitrosylnitrito(O)phthalocyaninato(2–)rhenate, l(PNP)[Re(NO)(ONO)pc2–]. Similarly, but with (nBu4N)NO2 red plates of tetra‐(n‐butyl)ammonium trans‐di(nitrosyl)phthalocyaninato(2–)rhenate, (nBu4N)trans[Re(NO)2pc2–] is isolated. Addition of (PNP)Br or (PNP)PF6 to a concentrated solution of (nBu4N)trans[Re(NO)2pc2–] in pyridine precipitates l(PNP)trans[Re(NO)2pc2–]. (nBu4N)trans[Re(NO)2pc2–] and PPh3 at 300 °C yield blue green nitrosyl(triphenylphosphane oxide)phthalocyaninato(2–)‐ rhenium, [Re(NO)(OPPh3)pc2–], that is oxidised with iodine precipitating nitrosyl(triphenylphosphane oxide)phthalocyaninato(2–)rhenium triiodide, [Re(NO)(OPPh3)pc2–]I3. The crystal structures of l(PNP)[Mn(NO)(ONO)pc2–] ( 1 ), l(PNP)‐ [Mn(NO)(NCO)pc2–] ( 2 ), l(PNP)trans[Mn(NO)2pc2–] ( 3 ), l(PNP)trans[Re(NO)2pc2–] ( 4 ) [Mn(NO)(OPPh3)pc2–] ( 5 ), [Re(NO)(OPPh3)pc2–] ( 6 ), and [Re(NO)(OPPh3)pc2–]I3 · CH2Cl2 ( 7 ) have been determined. The M–N(NO) distance varies between 1.623(12) Å in 5 and 1.846(3) Å in 3 . The M–N–O moiety is almost linear. The UV‐Vis spectra with the B band at ca. 14500 cm–1and the Q band at 30400 cm–1 do not dependent significantly on the axial ligand and the metal atom and its oxidation state. N–O stretching vibrations are observed in the IR spectra between 1701 cm–1 in 3 and 1753 cm–1 in [Mn(NO)pc2–] or for the Re series between 1571 cm–1 in 4 and 1724 cm–1 in 7 . M–N(NO) stretching and M–N–O deformation vibrations are assigned in the IR spectra and resonance Raman spectra between 486 cm–1 in 4 and 620 cm–1 in 1 .  相似文献   

9.
The mass spectra of some α-substituted phenyl-α,α′-dimethoxyl ketones (compounds 1) and their 2,4-dinitrophenylhydrazones (compounds 2) and semicarbazones (compounds 3) have been studied. The characteristic fragments at m/z (M ? 73) from compounds 1, m/z (M ? 253) from compounds 2 and m/z (M ? 130) from compounds 3 are abundant and proposed to be [ArCROCH3]+. Fragmentations yielding [M+ ? 49] from compounds 2 are abnormal and probably involve the methoxyl and nitro groups. The intense peak at m/z 130 due to [CH3OCH2CNNHCONH2]+ from compounds 3 corresponds to α-cleavage of the molecular ion. Some other fragments from these new compounds are interpreted in this paper.  相似文献   

10.
Blue single crystals of Cu[μ2‐OOC(CH2)PO3H] · 2H2O ( 1 ) and Cu1.53‐OOC(CH2)PO3] · 5H2O ( 2 ) were prepared in aqueous solution. In compound 1 [space group C2/c (no. 15) with a = 1623.3(2), b = 624.0(1), c = 1495.5(2) pm, β = 122.45(1)°], Cu is coordinated by three oxygen atoms stemming from the hydrogenphosphonoacetate dianion and three water molecules to form a distorted octahedron. The Cu–O bonds range from 190.4(3) to 278.5(3) pm. The connection between the Cu2+ cations and the hydrogenphosphonoacetate dianions leads to a two‐dimensional structure with layers parallel to (101). The layers are linked by hydrogen bonds. In compound 2 [space group P1 (no. 2) with a = 608.2(1), b = 800.1(1), c = 1083.6(1) pm, α = 94.98(1)°, β = 105.71(1)°, γ = 109.84(1)°], two crystallographically independent Cu2+ cations are coordinated in a square pyramidal and an octahedral fashion, respectively. The Cu–O bonds range from 192.9(2) to 237.2(2) pm. The coordination of the phosphonoacetate trianion to Cu(1) results in infinite polyanionic chains parallel to [100] with a composition of {Cu(H2O)[OOC(CH2)PO3]}nn. Hydrated Cu(2) cations are accommodated between the chains as counterions. 1 and 2 show structural features of cation exchangers. Magnetic measurements reveal a paramagnetic Curie‐Weiss behavior. Compound 2 shows antiferromagnetic coupling between Cu2+ ions due to a super‐superexchange coupling. The UV/Vis spectra of 1 suggest three d–d transition bands at 763 nm (2B12E), 878 nm (2B12B2), and 1061 nm (2B12A1). Thermoanalytical investigations in air show that compound 1 is stable up to 165 °C, whereas decomposition of 2 begins at 63 °C.  相似文献   

11.
Summary NiII and CuII complexes of 2-acetylpyridine 4 N-(2-methylpyridinyl)-, 4 N-(2-ethylpyridinyl)- and 4 N-methyl(2-ethylpyridinyl) thiosemicarbazones (HL4pam, HL4pae, and HL4Mpae, respectively) of general formula [M(HL)X2] have been isolated from boiling EtOH and characterized by physico-chemical and spectroscopic methods. The growth inhibition activities of the thiosemicarbazones and their complexes were measured against Aspergillus nicer and Paecilomyces variotii.  相似文献   

12.
Iridium(I) N-heterocyclic carbene complexes of formula Ir(κ2O,O’-BHetA)(IPr)(η2-coe) [BHetA=bis-heteroatomic acidato, acetylacetonate or acetate; IPr=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-carbene; coe=cyclooctene] have been prepared by treating Ir(κ2O,O’-BHetA)(η2-coe)2 complexes with IPr. These complexes react with 2-vinylpyridine to afford the hydrido-iridium(III)-alkenyl cyclometalated derivatives IrH(κ2O,O’-BHetA)(κ2N,C-C7H6N)(IPr) through the iridium(I) intermediate Ir(κ2O,O’-BHetA)(IPr)(η2-C7H7N). The cyclometalated IrH(κ2O,O’-acac)(κ2N,C–C7H6N)(IPr) complex efficiently catalyzes the hydroalkenylation of aromatic and aliphatic terminal alkynes and enynes with 2-vinylpyridine to afford 2-(4R-butadienyl)pyridines with Z,E configuration as the major reaction products (yield up to 89 %). In addition, unprecedented (Z)-2-butadienyl-5R-pyridine derivatives have been obtained as minor reaction products (yield up to 21 %) from the elusive 1Z,3gem-butadienyl hydroalkenylation products. These compounds undergo a thermal 6π-electrocyclization to afford bicyclic 4H-quinolizine derivatives that, under catalytic reaction conditions, tautomerize to 6H-quinolizine to afford the (Z)-2-(butadienyl)-5R-pyridine by a retro-electrocyclization reaction.  相似文献   

13.

The cobalt(III) complexes [CoX2(tmd)2]+ (X: Cl? or NCS?, tmd: tetramethylenediamine), in which tmd forms a seven-membered chelate ring, have been prepared. Trans-[CoCl2(tmd)2]Cl was derived from [Co(NO2)2(tmd)2]NO3 in a fairly good yield. Two geometrical isomers, trans and cis, of [Co(NCS)2-(tmd)2]NO3 were independently synthesized from trans-[CoCl2(tmd)2]Cl by different methods. The geometrical configurations of the isomeric pair of the NCS complex have been determined based on chromatographic behavior, electronic absorption spectra, and vibrational spectra. The d-d and CT absorption maxima of the NCS complex (18.7 x 103cm?1 (ε = 275) and 30.9 x 103cm?1 (ε = 3630) for the trans isomer, 19.3 x 103cm?1 (ε = 302) and 31.0 x 103cm?1 (ε = 4070) for the cis isomer) and the Co-N(amine) stretching frequency of trans-[CoCl2(tmd)2]Cl (418 cm?1) have been compared with those of the corresponding ethylenediamine and trimethylenediamine complexes.  相似文献   

14.
Deprotonation, methylation, and air oxidation of polycyclic arenes coordinated to chromium(0), (η6-arene)Cr(CO)3, produced ring-methylated products with high selectivity and in good yield. This procedure gave 3-methylbenz[a]anthracene from (η6-benz[a]anthracene)Cr(CO)3, 3-methylphenanthrene from (η6-phenanthrene)Cr(CO)3, 2-acetyl-6-methylphenanthrene from (η6?2-acetylphenanthrene)Cr(CO)3, and 3,7,12-trimethylbenz[a]anthracene from (η6?7,12-dimethylbenz[a]anthracene)Cr(CO)3.  相似文献   

15.
The biosynthesis of chlorophyll a and chlorophyll b from (2R,3R)‐ and (2S,3S)‐5‐amino[2,3‐14C2,2,3‐2H2,2,3‐3H2]levulinic acid in greening barley has established that chlorophyllide a oxidase catalyses the transformation of the methyl group at C(7) of chlorophyllide a into the CHO group of chlorophyllide b with the loss of HSi from the 7‐(hydroxymethyl)chlorophyllide intermediate.  相似文献   

16.
The complex fac-(η2-C60)(η2-dppe)Cr(CO)3 (dppe?=?1,2-bis(diphenylphosphino)ethane and C60?=?[60]fullerene) reacts with piperidine (pip) to produce fac-(η2-C60)(η1-pip)2Cr(CO)3. The reactions are first order with respect to [?fac-(η2-C60)(η2-dppe)Cr(CO)3] under flooding conditions where [pip]???[?fac-(η2-C60)(η2-dppe)Cr(CO)3]. The pseudo-first order rate constant values (k obsd) are [pip]-dependent. Curved (upward) plots of k obsd versus [pip] and linear plots of k obsd versus [pip]2 indicate that the piperidine-assisted dppe displacement from fac-(η2-C60) (η2-dppe)Cr(CO)3 is second order with respect to [pip]. The proposed mechanism involves a [60]fullerene-stabilized intermediate.  相似文献   

17.
Crystals of poly[[aqua[μ3‐4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylato‐κ5O1O1′:N3,O4:O5][μ4‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylato‐κ7N3,O4:O4,O4′:O1,O1′:O1]cadmium(II)] monohydrate], {[Cd2(C15H14N2O4)(C16H14N2O6)(H2O)]·H2O}n or {[Cd2(Hcpimda)(cpima)(H2O)]·H2O}n, (I), were obtained from 1‐(4‐carboxybenzyl)‐2‐propyl‐1H‐imidazole‐4,5‐dicarboxylic acid (H3cpimda) and cadmium(II) chloride under hydrothermal conditions. The structure indicates that in‐situ decarboxylation of H3cpimda occurred during the synthesis process. The asymmetric unit consists of two Cd2+ centres, one 4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylate (Hcpimda2−) anion, one 1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylate (cpima2−) anion, one coordinated water molecule and one lattice water molecule. One Cd2+ centre, i.e. Cd1, is hexacoordinated and displays a slightly distorted octahedral CdN2O4 geometry. The other Cd centre, i.e. Cd2, is coordinated by seven O atoms originating from one Hcpimda2− ligand and three cpima2− ligands. This Cd2+ centre can be described as having a distorted capped octahedral coordination geometry. Two carboxylate groups of the benzoate moieties of two cpima2− ligands bridge between Cd2 centres to generate [Cd2O2] units, which are further linked by two cpima2− ligands to produce one‐dimensional (1D) infinite chains based around large 26‐membered rings. Meanwhile, adjacent Cd1 centres are linked by Hcpimda2− ligands to generate 1D zigzag chains. The two types of chains are linked through a μ2‐η2 bidentate bridging mode from an O atom of an imidazole carboxylate unit of cpima2− to give a two‐dimensional (2D) coordination polymer. The simplified 2D net structure can be described as a 3,6‐coordinated net which has a (43)2(46.66.83) topology. Furthermore, the FT–IR spectroscopic properties, photoluminescence properties, powder X‐ray diffraction (PXRD) pattern and thermogravimetric behaviour of the polymer have been investigated.  相似文献   

18.
Properties indirectly determined, or alluded to, in previous publications on the titled isomers have been measured, and the results generally support the earlier conclusions. Thus, the common five‐coordinate intermediate generated in the OH?‐catalyzed hydrolysis of exo‐ and endo‐[Co(dien)(dapo)X]2+ (X=Cl, ONO2) has the same properties as that generated in the rapid spontaneous loss of OH? from exo‐ and endo‐[Co(dien)(dapo)OH]2+ (40±2% endo‐OH, 60±2% exo‐OH) and an unusually large capacity for capturing (R=[CoN3]/[CoOH][]=1.3; exo‐[CoN3]/endo‐[CoN3]=2.1±0.1). Solvent exchange for spontaneous loss of OH? from exo‐[Co(dien)(dapo)OH]2+ has been measured at 0.04 s?1 (k1, 0.50M NaClO4, 25°) from which similar loss from the endo‐OH isomer may be calculated as 0.24 s?1 (k2). The OH?‐catalyzed reactions of exo‐ and endo‐[Co(dien)(dapo)N3]2+ result in both hydrolysis of coordinated via an OH?‐limiting process =153 M ?1 s?1; =295 M ?1 s?1; KH=1.3±0.1 M ?1; 0.50M NaClO4, 25.0°) and direct epimerization between the two reactants =33 M ?1 s?1; =110 M ?1 s?1; 1.0M NaClO4, 25.0°). Comparisons are made with other rapidly reacting CoIII‐acido systems.  相似文献   

19.
Three Cu(II) complexes, Cu2(bpy)(H2O)(Clma)2 (1), Cu2(bpe)(H2O)2(Clma)2 (2), and Cu(bpp)(Clma) (3), were synthesized (HClma = (R)-2-Chloromandelic acid, bpy?=?4,4′-dipyridine, bpe?=?1,2-di(4-pyridyl)ethylene, bpp?=?1,3-di(4-pyridyl)propane). Complexes 1, 2, and 3 are constructed from 1-D coordination arrays generated from Cu2(H2O)(Clma)2, Cu2(H2O)2(Clma)2, and Cu2(Clma)2 moieties and linked through bpy, bpe, and bpp co-ligands, respectively. 1 and 2 are assembled into 3-D supramolecular networks via O–H?O hydrogen bonds with topology of (63)(69·8) and (412·63), respectively, and 3 is assembled into a 3-D architecture through C–H?O hydrogen bonds with topology of (43·63)(43)(44·65·8)(46·66·83). Compounds 1, 2, and 3 crystallized in acentric space groups P21, P1, and P21, which exhibit significant ferroelectricity (remnant polarization Pr?=?0.008?μC?cm?2, coercive field Ec?=?21.4?kV?cm?1, the spontaneous saturation polarization Ps?=?0.167?μC?cm?2 for 1, Pr?=?0.183?μC?cm?2, Ec?=?1.69?kV?cm?1, and Ps?=?0.021 μC?cm?2 for 3). Results from infrared and thermal analyses are also discussed.  相似文献   

20.
Summary The kinetics of aquation of cis-[Co(en)2(H2O)Br]2+ and cis-[Cr(en)2(H2O)Br]2+ (en = ethylenediamine) were investigated in aqueous mixtures of MeOH, EtOH, i-PrOH and t-BuOH. The values of transfer functions corresponding to the transfer of reactants and activated complex from water to the solvent mixtures were evaluated from kinetic measurements and from solubilities of the complex salt. Analysis of the solvent effect confirmed a common Id mechanism for the aquation of the CoIII and CrIII complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号