首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The crystalline one‐dimensional compound, [RhII2(bza)4(pyz)]n ( 1 ) (bza=benzoate, pyz=pyrazine) demonstrates gas adsorbency for N2, NO, NO2, and SO2. These gas‐inclusion crystal structures were characterized by single‐crystal X‐ray crystallography as 1 ?1.5 N2 (298 K), 1 ?2.5 N2 (90 K), and 1 ?1.95 NO (90 K) under forcible adsorption conditions and 1 ?2 NO2 (90 K) and 1 ?3 SO2 (90 K) under ambient pressure. Crystal‐phase transition to the P space group that correlates with gas adsorption was observed under N2, NO, and SO2 conditions. The C2/c space group was observed under NO2 conditions without phase transition. All adsorbed gases were stabilized by the host lattice. In the N2, NO, and SO2 inclusion crystals at 90 K, short interatomic distances within van der Waals contacts were found among the neighboring guest molecules along the channel. The adsorbed NO molecules generated the trans‐NO???NO associated dimer with short intermolecular contacts but without the conventional chemical bond. The magnetic susceptibility of the NO inclusion crystal indicated antiferromagnetic interaction between the NO molecules and paramagnetism arising from the NO monomer. The NO2 inclusion crystal structure revealed that the gas molecules were adsorbed in the crystal in dimeric form, N2O4.  相似文献   

2.
A series of OEGylated poly(γ‐benzyl‐l ‐glutamate) with different oligo‐ethylene‐glycol side‐chain length, molecular weight (MW = 8.4 × 103 to 13.5 × 104) and narrow molecular weight distribution (PDI = 1.12–1.19) can be readily prepared from triethylamine initiated ring‐opening polymerization of OEGylated γ‐benzyl‐l ‐glutamic acid based N‐carboxyanhydride. FTIR analysis revealed that the polymers adopted α‐helical conformation in the solid‐state. While they showed poor solubility in water, they exhibited a reversible upper critical solution temperature (UCST)‐type phase behavior in various alcoholic organic solvents (i.e., methanol, ethanol, 1‐propanol, 1‐butanol, 1‐pentanol, and isopropanol). Variable‐temperature UV–vis analysis revealed that the UCST‐type transition temperatures (Tpts) of the resulting polymers were highly dependent on the type of solvent, polymer concentration, side‐ and main‐chain length. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1348‐1356  相似文献   

3.
This study pertains to the dynamic evolution of the Belousov–Zhabotinsky (BZ) chemical oscillator upon the addition of different aliphatic alcohols (methanol, ethanol, n‐propanol, iso‐propanol, n‐butanol, sec‐butanol, iso‐butanol, and tert‐butanol) at 30°C in a stirred batch reactor. The oscillations are monitored potentiometrically. The experimental findings reveal that the course of the BZ reaction is significantly altered depending on the concentration of the alcohol and the type of the carbon chain present. The mechanism of the alcohol perturbation has been interpreted on account of the experimental results. Besides the qualitative study, a new approach for monitoring the analytical concentration of these alcohols using the BZ oscillatory regime has been explored and it has been found that the alcohol perturbation is directly related to the concentration of the alcohol added, which in turn depends on the inhibition time for the rebirth of oscillatory regime.  相似文献   

4.
A series of OEGylated random copolypeptides with similar main‐chain lengths and different oligo(ethylene glycol) (OEG) molar content and chain lengths were prepared from triethylamine initiated ring‐opening polymerization (ROP) of OEGylated γ‐benzyl‐L‐glutamic acid based N‐carboxyanhydride (OEGmBLG–NCA, m = 2, 3) and γ‐benzyl‐L‐glutamic acid based N‐carboxyanhydride (BLG–NCA). 1H NMR analysis verified copolypeptides structures and determined the OEG molar content (x). FTIR analysis further confirmed the molecular structures, indicated α‐helical conformations of copolypeptides in the solid‐state, and revealed H‐bonding interactions between OEG pendants and alcoholic solvents. The copolypeptides exhibited a reversible upper critical solution temperature (UCST)‐type phase behavior in various alcoholic solvents (i.e., methanol, ethanol, 1‐propanol, 1‐butanol, and 1‐pentanol) depending on the x values and OEG side‐chain lengths (m). Variable‐temperature UV–vis analysis revealed that the UCST‐type transition temperatures (Tpts) of the copolypeptides in alcohols decreased as x or m value increased or as polymer concentration decreased. Tpts of copolypeptides with high x values (x ≥ 0.50) increased as the number of methylene of the alcoholic solvent increased from 3 (i.e., 1‐propanol) to 5 (i.e., 1‐pentanol). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3444–3453  相似文献   

5.
付东  刘建岷 《中国化学》2009,27(2):235-240
在密度梯度展开的基础上,将影响参数k 表达成温度的函数,建立了一个适用于均相和非均相缔合流体的状态方程。应用流体的蒸汽压和液相密度实验数据关联分子参数。在密度梯度理论的框架下,计算了水,重水,甲醇,乙醇,正丙醇,正丁醇,正戊醇和正己醇的成核速率并与实验数据进行了对比,计算结果令人满意。结果表明,密度梯度理论与密度泛函理论一样,可研究液核的结构和性质,但通过调整影响参数k, 可获得更为准确的成核速率。  相似文献   

6.
《Analytical letters》2012,45(10):1973-1979
Abstract

A 25 factorial design was used to evaluate the effect of methanol, ethanol, propanol, butanol and pentanol on the paper chromatographic separation of Arginine, Threonine, Leucine, Histidine, and Tryptophan. The most significant effects occur for the alcohols themselves with an increasing effect with an increase in carbon chain length. The major interaction terms involve the combinations of butanol and pentanol with the other alcohols or with themselves.  相似文献   

7.
The effects of ammonium sulfate aerosols on the kinetics of the hydroxyl radical reactions with C1–C6 aliphatic alcohols have been investigated using the relative rate technique. P‐xylene was used as a reference compound for the C2–C6 aliphatic alcohols study, and ethanol was used as a reference compound for the methanol study. Two different aerosol concentrations that are typical of polluted urban conditions were tested. The total surface areas of aerosols were 1400 μm2 cm?3 (condition I) and 3400 μm2 cm?3 (condition II). Results indicate that ammonium sulfate aerosols promote the ethanol/OH radical and 1‐propanol/OH radical reactions as compared to the p‐xylene/OH radical reaction. The relative rate of the ethanol/·OH reaction versus the p‐xylene/·OH reaction increased from 0.19 ± 0.01 in the absence of aerosols to 0.24 ± 0.01 and 0.26 ± 0.02 under aerosol conditions I and II, respectively. The relative rate of the 1‐propanol/·OH reaction versus the p‐xylene/·OH reaction increased from 0.45 ± 0.03 in the absence aerosols to 0.56 ± 0.02 and 0.55 ± 0.03 under aerosol conditions I and II, respectively. However, significant changes in the relative rates of the 1‐butanol/·OH, 1‐pentanol/·OH, and 1‐hexanol/·OH reactions versus the p‐xylene/·OH reaction were not observed for either aerosol concentration. The relative rates of the methanol/·OH reaction versus the ethanol/·OH reaction were identical in the absence and presence of aerosols. These results indicate that ammonium sulfate aerosols promote the methanol/·OH reaction as much as the ethanol/·OH reaction (as compared to the p‐xylene/·OH reaction). © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 422–430, 2001  相似文献   

8.
The rate constant of malachite green (MG+) alkaline fading was measured in water‐ethanol‐1‐propanol ternary mixtures. This reaction was studied under pseudo‐first‐order conditions at 283‐303 K. It was observed that the reaction rate constant increases in the presence of different weight percentages of ethanol and 1‐propanol. The fundamental rate constants of MG+ fading in these solutions were obtained by SESMORTAC model. In each series of experiments, concentration of one alcohol was kept constant and the concentration of the second one was changed. It was observed that at constant concentration of one alcohol and variable concentrations of the second one, with increase in temperature, k1 values increase and this indicates that presence of ethanol (or 1‐propanol) increases dissolution of 1‐propanol (or ethanol) in the activated complex formed in these solutions. Also, in each zone, fundamental rate constants of reaction at each certain temperature change as k2 » k1 » k?1.  相似文献   

9.
A Hoffman‐like coordination polymer with appreciable porosity and uncoordinated pyridyl groups, namely, [Fe(2,5‐bpp){Au(CN)2}2] ? x Solv (2,5‐bpp=2,5‐bis(pyrid‐4‐yl)pyridine; Solv=solvent), was synthesised and characterised. A series of fascinating spin‐crossover behaviours with abrupt, stepwise and hysteretic features were obtained by exchange with a range of protic solvents (ethanol, n‐propanol, isopropyl alcohol, sec‐butanol and isobutanol). Guest–host hydrogen‐bonding interactions involving the H‐accepting site of the framework are primarily responsible for the pronounced cooperativity of these spin‐crossover behaviours. Meanwhile, the tunable critical temperatures over a range of about 130 K are presumably attributable to a certain degree of competition between internal pressure and local electronic influences of solvents.  相似文献   

10.
Cellulose tris(4-methylphenylcarbamate),amylose tris(3,5-dimethylphenylcarbamate) and amylose tris (phenylcarbamate) were prepared by the method reported by Okamoto and were coated onto an aminopropylated mesoporous spherical silica gel.These final products were used as chiral stationary phases of high performance liquid chromatography for the eighteen structurally related biphenyl compounds.The resolution was made using normal-phase methodology with a mobile phase consisting of n-hexane-alcohol(ethanol,1-propanol,2-propanol or 1-butanol).The effects of various aliphatic alcohols in the mobile phase were studied.The structural features of the solutes that influence their k′ were discussed.A dominant effects of trifluoroacetic acid on chiral separation of acidic solutes was noted.  相似文献   

11.
Nanocatalysts Pd, Pd8Ni2, Pd8Sn2 and Pd8Sn1Ni1 supported on multi‐walled carbon nanotubes (MWCNTs) were successively synthesized by the chemical reduction method in the glycol‐water mixture solvent. Transmission electron microscopy results show that the prepared Pd, Pd8Ni2, Pd8Sn2 and Pd8Sn1Ni1 nanoparticles are uniformly dispersed on the surface of MWCNTs. The average particle sizes of the nanocatalysts are 3.5–3.8 nm. Electroactivity of the prepared catalysts towards oxidation of ethanol, 1‐propanol, 2‐propanol, n‐butanol, iso‐butanol and sec‐butanol (C2? C4 alcohols) in alkaline medium was studied by cyclic voltammetry and chronoamperometry. The current density obtained for the electrooxidation of C2? C4 alcohols depends on the catalysts and the various structures of the alcohols. Addition of Sn or/and Ni to Pd nanoparticles enhances the electroactivity of the Pd/MWCNT catalyst. Furthermore, the ternary Pd8Sn1Ni1/MWCNT catalyst presents the highest electroactivity for the oxidation of C2? C4 alcohols among the prepared catalysts. Electrocatalytic activity order among propanol isomers and butanol isomers is as follows respectively: 1‐propanol > 2‐propanol, and n‐butanol > iso‐butanol > sec‐butanol > tert‐butanol. This is consistent with the Mulliken charge value of the carbon atom bonded with hydroxyl group in the corresponding alcohol molecule.  相似文献   

12.
The statistical associating fluid theory (SAFT) in conjunction with the Weeks‐Chandler‐Anderson (WCA) approximation for intermolecular interaction is employed to construct a non‐uniform equation of state (EOS) for n‐alcohols. The molecular parameters for methanol, ethanol, 1‐propanol, 1‐butanol, 1‐pentanol and 1‐hexanol are obtained by fitting to the experimental data of vapor‐liquid equilibria and then used to predict the nucleation rates under the framework of density functional theory (DFT). The predictions are found to be in quite good agreement with the experimental data. Investigation shows that the combination of DFT and SAFT is a successful approach for vapor‐liquid nucleation rates of n‐alcohols.  相似文献   

13.
Retention of a model set of sulfonylurea compounds has been studied under RP‐LC conditions, considering competitional effects brought by different alcohols (ethanol, 1‐propanol, 2‐propanol, 1‐butanol, 1‐pentanol, and 1‐octanol) used as additives in the organic component of the mobile phase (methanol). The capacity factors determined for the model compounds decreased with the increase of the hydrophobic character of the organic additive in the mobile phase. The amount of the additive within the organic component of the mobile phase was kept constant (1% as volumetric ratio). Retention was studied at different mobile phase compositions (aqueous to organic component ratios). Different functional fitting models were used to correlate retention to the content of the organic component in the mobile phase. Extrapolation of retention expressed as capacity factor to a mobile phase composition free of organic component is well correlated to the hydrophobic characteristics of the organic additives. The adsorption model was used for tuning the experimental find‐outs. The possibility of controlling retention through the competitive effects induced by hydrophobic additives in the mobile phase is highlighted.  相似文献   

14.
Changing channels : The novel dynamic gas‐separation mechanism is demonstrated by a GC study for a flexible single crystal [Cu2(bza)4(pyz)]n, 1 . The single‐crystal host 1 , because of its flexibility, can separate various gases by adjusting its channel structure according to the features of the guest gaseous molecules.

  相似文献   


15.
A host framework for inclusion of various guest molecules was investigated by preparation of inclusion crystals of 1,8‐bis(4‐aminophenyl)anthracene (1,8‐BAPA) with organic solvents. X‐ray crystallographic analysis revealed construction of the same inclusion space incorporating 1,8‐BAPA and eight guest molecules including both non‐polar (benzene) and polar guests (N,N‐dimethylformamide, DMF). Fluorescence efficiencies varied depending on guest molecule polarity; DMF inclusion crystals exhibited the highest fluorescence intensity (ΦF=0.40), four times as high as that of a benzene inclusion crystal (ΦF=0.10). According to systematic investigations of inclusion phenomena, strong host–guest interactions and filling of the inclusion space led to a high fluorescence intensity. Temperature‐dependent fluorescence spectral measurements revealed these factors effectively immobilised the host framework. Although hydrogen bonding commonly decreases fluorescence intensity, the present study demonstrated that such strong interactions provide excellent conditions for fluorescence enhancement. Thus, this remarkable behaviour has potential application toward sensing of highly polar molecules, such as biogenic compounds.  相似文献   

16.
The reactions of dehydrochlorination of 1,1‐trichloro‐2,2‐bis(p‐chlorophenyl)ethane, DDT, and 1,1‐dichloro‐2,2‐bis(p‐chlorophenyl)ethane, DDD, with hydroxide ions were studied in various TTAB–alcohol (TTAB = tetradecyltrimethylammonium bromide) aqueous micellar solutions as a function of alcohol content. The alcohols used were heptanol, hexanol, pentanol, butanol, isobutanol, tert butanol, propanol and isopropanol. Kinetic data show that the dissociation degree of the micelles is the main factor controlling reactivity in all the TTAB–alcohol micellar solutions. This fact permits the development of a kinetic method in order to estimate the dissociation degree of the micellar aggregates present in the alcohol–TTAB aqueous micellar solutions. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 204–209, 2000  相似文献   

17.
PAL  Amalendu GABA  Rekha 《中国化学》2007,25(12):1781-1789
Excess molar volumes Vm^E and kinematic viscosities v have been measured as a function of composition for binary mixtures of propylene glycol monomethyl ether (1-methoxy-2-propanol), MeOCH2CH(OH)Me, propylene glycol monoethyl ether (1-ethoxy-2-propanol), EtOCH2CH(OH)Me, propylene glycol monopropyl ether (1-propoxy-2-propanol), PrOCH2CH(OH)Me, propylene glycol monobutyl ether (1-butoxy-2-propanol), BuOCH2CH(OH)Me, and propylene glycol tert-butyl ether (1-tert-butoxy-2-propanol), t-BuOCH2CH(OH)Me with 1-butanol, and 2-butanol, at 298.15 K and atmospheric pressure. The excess molar volumes are negative across the entire range of composition for all the systems with 1-butanol, and positive for the systems 2-butanol+ 1-methoxy-2-propanol, and +1-propoxy-2-propanol, negative for the systems 2-butanol+1-butoxy-2-propanol, and change sign for the systems 2-butanol+ 1-ethoxy-2-propanol, and + 1-tert-butoxy-2-propanol. From the experimental data, the deviation in dynamic viscosity η from ∑χiηi has been calculated. Both excess molar volumes and viscosity deviations have been correlated using a Redlich-Kister type polynomial equation by the method of least-squares for the estimation of the binary coefficients and the standard errors.  相似文献   

18.
邹立壮  路遥等 《中国化学》2002,20(9):822-828
Solubilities of tetraphenylarsonium tetraphenylborate(Ph4AsB-Ph4) in water,methanol,ethanol, 1-propanol,1-butanol,1-pentanol,1-hexanol and 1-octanol at T=293.2,298.2,303.2 and 308.2 K have been determined by spectrophotometry,The standard transfer Gibbs energy (△trG^0w→s) and entropy (△trS^0w→s) of Ph4AsBPh4 from water to the n-alkanols at temerature from 293.2 K to 308.2 K have been obtained.Fur-thermore,the contribution of microscopic interaction to the standard Gibbs energy of transfer for Ph4AsBPh4 was calculated and discussed,The results show that the effect of hydrophobic inderaction of Ph4AsBPh4 on its transfer process is the most im-portant factor .According to the thermodynamical principle,the transfer process of Ph4AsBPh4 from water to the n-alkanols is the entropy dominanted.  相似文献   

19.
Surface‐enhanced infrared absorption spectroscopy (SEIRA) of methanol, ethanol, 1‐propanol, and 2‐propanol in thin films on planar silver halide (AgX) fibers under slow N2 flow using 1 sec scans reveals structure in absorbance–time plots. The absorption intensities show extra enhancements (3×) in the absorbance (O? H stretch) ascribed to oligomers present at the AgX surface (molecule enhanced, thus MOSEIRA).This is above those due to amplification (40×, 20 reflections) and enhancement (30×, image dipoles or surface phonon polaritons). In the case of ethanol an excellent initial pentamer spectrum evolves over 8–10 min to a mixture of pentamer, tetramer, and trimer spectra that within another minute forms small oligomers and monomers. We use a new type of cell for infrared spectroscopy containing an AgX planar fiber. The optical configuration leads to a vicinal region at the surface defined by evanescent waves. Within this region are surface‐induced organized species such as ethanol oligomers. The planar AgX fiber supports 20 reflections and transmits light over a wide visible–infrared wavelength range. Short scan times permit the study of volatile substrates or solvents, including the effects of solvent polarity.  相似文献   

20.
Sandip R. Sabale 《中国化学》2011,29(11):2562-2564
In the present work, we report the studies concerning liquid‐liquid‐solid equilibria for the ternary system sodium thiosulphate (Na2S2O3)+t‐butanol+water at ambient pressure and at room temperature (303±2 K). The solubility data of Na2S2O3 are reported for solutions in water, t‐butanol and solutions of varying concentrations of t‐butanol in water. The phase diagram for the said system is developed, described and compared with similar systems studied such as Na2S2O3+ethanol+water, K2CO3+methanol+water, etc. These results have been explained in terms of structural properties of aqueous t‐butanol solutions and further discussed in terms of the effect of ions to cause phase separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号