首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
The gas‐phase reactions of the NO3 radical with 2‐methylthiophene, 3‐methylthiophene, and 2,5‐dimethylthiophene have been studied, using relative and absolute methods at 298 K. Determination of relative rate was performed using Teflon collapsible bag as the reaction chamber and gas chromatography as the analytical tool. For the absolute method, experiments were carried out using fast‐flow‐discharge technique with detection of NO3 by laser‐induced fluorescence. The temperature dependence was studied by the absolute technique for the reactions of NO3 with 2‐methylthiophene and 3‐methylthiophene in the range 263–335 K. The proposed Arrhenius expressions for the reaction of the nitrate radical with 2‐methylthiophene and 3‐methylthiophene are k = (4 ± 2) × 10?16 exp[?(2200 ± 100)/T]] cm3 molecule?1 s?1 and k = (3 ± 2) × 10?15 exp[?(1700 ± 200)/T]] cm3 molecule?1 s?1, respectively. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 286–293, 2003  相似文献   

2.
A copolymer, poly(aniline‐co‐o‐aminophenol), was prepared chemically by using ammonium peroxydisulfate as an oxidant. The monomer concentration ratio of o‐aminophenol to aniline strongly influences the copolymerization rate and properties of the copolymer. The optimum composition of a mixture for the chemical copolymerization consisted of 0.3 M aniline, 0.021 M o‐aminophenol, 0.42 M ammonium peroxydisulfate, and 2 M H2SO4. The result of cyclic voltammograms in a potential region of ?0.20 to 0.80 V (vs.SCE) indicates that the electrochemical activity of the copolymer prepared under the optimum condition is similar to that of polyaniline in more acid solutions. However, the copolymer still holds the good electrochemical activity until pH 11.0. Therefore, the pH dependence of the electrochemical property of the copolymer is improved, compared with poly(aniline‐co‐o‐aminophenol) prepared electrochemically, and is much better than that of polyaniline. The spectra of IR and 1H NMR confirm that o‐aminophenol units are included in the copolymer chain, which play a key role in extending the usable pH region of the copolymer. The visible spectra of the copolymers show that a high concentration ratio of o‐aminophenol to aniline in a mixture inhibits the chain growth. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5573–5582, 2007  相似文献   

3.
3-甲基噻吩和3-氯噻吩首次三氟化硼乙醚溶液中实现了电化学共聚。共聚物的分子结构通过电化学分析、红外和拉曼光谱得到了证实。实验结果表明:单体投料比对共聚物的结构和电化学性质有很大的影响;共聚物比3-甲基噻吩和3-氯噻吩的均聚物具有更大的充放电电容和更可逆的氧化还原性质。  相似文献   

4.
A set of vanadium(III) complexes, namely {SNO}VCl2(THF)2 ( 2a , SNO = thiophene‐(N═CH)‐phenol; 2b , SNO = 5‐phenylthiophene‐(N═CH)‐phenol; 2c , SNO = 5‐phenylthiophene‐(N═CH)‐4‐tert ‐butylphenol; 2d , SNO = 5‐methylthiophene‐(N═CH)‐phenol; 2e , SNO = 5‐methylthiophene‐(N═CH)‐4‐tert ‐butylphenol; 2f , SNO = 5‐methylthiophene‐(N═CH)‐2‐methylphenol; 2g , SNO = 5‐methylthiophene‐(N═CH)‐4‐fluorophenol), were synthesized by reaction of VCl3(THF)3 with phenoxy–imine–thiophene proligands ( 1a – g ). All vanadium(III) complexes were characterized using elemental analysis and infrared and electron paramagnetic resonance spectroscopies. Upon activation with methylaluminoxane (MAO), vanadium precatalysts 2a – g proved active in the polymerization of ethylene (213.6–887.2 kg polyethylene (mol[V])−1⋅h−1), yielding high‐density polyethylenes with melting temperatures in the range 133–136 °C and crystallinities varying from 28 to 41%. The 2e/ MAO catalyst system was able to copolymerize ethylene with 1‐hexene affording poly(ethylene‐co ‐1‐hexene)s with melting temperatures varying from 126 to 102 °C and co‐monomer incorporation in the range 3.60–4.00%.  相似文献   

5.
A one‐step route has been reported for the fabrication of poly(aniline‐co‐pyrrole) (PACP) copolymer hollow nanospheres via the oxidation polymerization of a mixture of aniline and pyrrole in the presence of Triton X‐100. It was found that the variations in polymerization conditions, such as the concentrations of Triton X‐100 and comonomers, and [pyrrole]/[aniline] molar ratios, could change the size and uniformity of copolymer hollow nanospheres. The result of DLS has attested the presence of the spherical Triton X‐100 micelles swelled by the comonomers in reaction system, and such micelles might play template for the formation of hollow nanospheres, followed by developing a possible formation mechanism. The chemical structures and crystallinity of products were characterized by FTIR, UV–visible, 1H NMR spectra, and XRD patterns, respectively, to prove the copolymer chemical structures of hollow nanospheres. The thermal‐stability and solubility of PACP were improved compared with homopolymers (polyaniline and pyrrole). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3563–3572, 2008  相似文献   

6.
A well‐defined linear ABC triblock copolymer of ethylene oxide (EO), methyl methacrylate (MMA), and styrene (St) was prepared by sequential living anionic and photo‐induced charge transfer polymerization (CTP) using p‐aminophenol as parent compound. In the first step, the diblock copolymer of PEO‐b‐PMMA with a protected aniline end group at PEO end was prepared by initiating of phenoxo‐anion the polymerization of EO and MMA successively, then the diblock copolymer of PEO‐b‐PMMA via deprotection of aniline at PEO end constituted a binary initiation system with benzophenone (BP) by charge transfer complex mechanism to initiate the polymerization of St under UV‐irradiation. The GPC and NMR measurements support that in copolymerization, either in the first or second step, neither homopolymer nor side reactions, such as chain transfer or chain termination, was found. The effect of the concentration of PEOab‐PMMA and St, and the polarity of solvent on the polymerization rate (Rp) of CTP is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 825–833, 1999  相似文献   

7.
A ruthenium(II) functionalized pyrrole, Ruthenium‐bis‐N,N′‐(2,2′‐bipyridyl)‐N‐(pyridine‐4‐ylmethyl‐(8‐pyrrole‐1‐yl‐octyl)amine)chloride, 1 , has been synthesized and characterized by spectroscopic (UV/vis, 1H NMR) techniques and cyclic voltammetry. In solution 1 gave a redox couple associated with the Ru3+/2+ redox system and an irreversible wave associated with the oxidation of the covalently linked pyrrole moiety. What is believed to be homopolymerization, redox active surface films of 1 have been prepared by electrooxidation of the monomeric solution. The resulting polymeric film exhibited clear redox activity associated with the incorporated Ru2+ redox centre, which is covalently linked ruthenium centre to the pyrrole moiety in 1. The effect of surface coverage upon the electrochemical behavior of the deposited films has been undertaken. Preliminary investigations into the homogeneous charge transport dynamics of the polymeric film deposited onto platinum microelectrodes has been undertaken. Copolymerization with 3‐methylthiophene was carried out and a clear ruthenium response was seen. Films were formed by both cyclic voltammetry and chronocoulometry and studied. Various ratios were attempted but the ideal was found to be 52 : 5 mmol (3‐methylthiophene: 1 ).  相似文献   

8.
《Electroanalysis》2006,18(11):1097-1104
Copolymerization of an osmium(II) functionalized pyrrole moiety, osmium‐bis‐N,N'‐(2,2′‐bipyridyl)‐N‐(pyridine‐4‐ylmethyl‐(8‐pyrrole‐1yl–octyl)‐amine)chloride ( I ) with 3‐methylthiophene was carried out. The resulting conducting polymer film exhibited a clear redox couple associated with the Os3+/2+ response and the familiar conducting polymer backbone signature. The effect of film thickness upon the redox properties of the copolymer was investigated in organic electrolyte solutions. Scanning electron micrographs (SEM) along with energy dispersive X‐ray (EDX) spectra of the copolymerized films were undertaken, both after formation and redox cycling in neutral buffer solution. These clearly show that electrolyte is incorporated into the polymer film upon redox cycling through the Os3+/2+ redox system. The Os3+/2+ response associated with the copolymer was seen to be significantly altered in the presence of ascorbic acid both in acidic and neutral pH buffer solutions. This pointed to an electrocatalytic reaction between the ascorbic acid and the Os3+ form of the copolymer. Under acidic conditions the copolymer film exhibited a sensitivity of 1.76 (±0.05) μA/mM with a limit of detection (LOD) of 1.45 μM for ascorbic acid. Under neutral pH conditions the copolymer exhibited a sensitivity of 19.26 (±1.05) μA/mM with a limit of detection (LOD) of 1.28 μM for ascorbic acid.  相似文献   

9.
A new benzoxazine aldehyde group containing monomer 3‐phenyl‐6‐formyl‐3, 4‐dihydro‐2H‐1, 3‐benzoxazine (Ald‐B) was synthesized via the Mannich reaction of formaldehyde, p‐hydroxybenzaldehyde, and aniline. The viscosities and curing behavior of the resins were studied. The results indicated that Ald‐B has an initial viscosity lower than 0.110 Pa s at 90°C and the maximum temperature of the exotherm was at 196°C. Dynamic mechanical analysis (DMA) of the copolymer of Ald‐B and methylenedianiline‐type bis‐benzoxazine (B‐BOZ) showed only one Tg of 251°C and high crosslink density in the matrix. The thermal stability of the copolymer was improved noticeably and the char yield at 800°C is 68.4%. The tensile strength and flexural strength of this resin cast are 72 and 137 MPa, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Poly-3-methylthiophene (P3MT) was synthesized in the room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) by constant potential and constant current respectively. The structure and morphology of P3MT films were characterized by FTIR spectrum and SEM. The undoped (reduction) and doped (oxidation) forms of P3MT film prepared in ionic liquid were reversible and stable. The P3MT film has strong characteristics of electrocatalytic oxidation of ascorbic acid and can separate the oxidation peaks of ascorbic acid and dopamine. Two methods of potential steps were used to observe the response time of the film and the film was found to have perfect electrochromic response.  相似文献   

11.
The copolymerization of 3‐methylthiophene (MeT) and fluorene (FE) was successfully achieved in boron trifluoride diethyl etherate by the direct anodic oxidation of the monomer mixtures on a platinum electrode. The optimal feed ratio together with the best suitable potential for their copolymerization was determined. The as‐formed copolymer films, which were copolymerized with a feed ratio of FE/MeT = 2:1 at a constant potential of 1.3 V (vs a saturated calomel electrode), had the advantages of both poly(3‐methylthiophene) and polyfluorene, such as good electrochemical behavior, high conductivity, excellent thermal stability, and high film quality. The structure of the copolymer was investigated with ultraviolet–visible, infrared spectroscopy, and thermal analysis. Fluorescence spectroscopy studies revealed that the dedoped copolymer film in the solid state was a good blue‐light emitter with a strong emission at 435 nm and a shoulder at 459 nm. The emitting properties of the copolymer could be tuned by parameters during the electrochemical polymerization, such as the applied potential and monomer feed ratio. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4904–4915, 2006  相似文献   

12.

Polyaniline and aniline/5‐aminoisophthalic acid (AIA) copolymer have been successfully synthesized via oxidation polymerization, as well as their composites containing carbon nanotubes. AIA can benefit the formation of quinoid rings in the aniline polymerization and promote the conductivity of the copolymer. IR and Raman spectra reveal AIA/aniline copolymers have both benzonoid and quinoid rings, as well as their doped structures. Good conductivity of the copolymer could be achieved at high AIA content. Carbon nanotubes can also simultaneously promote the formation of quinoid rings in the copolymer, enhance conductivity and improve thermal stability. The copolymerization of AIA with aniline and the introduction of carbon nanotubes show a synergistic enhancement of conductivity.  相似文献   

13.
Poly(ethylene glycol) (PEG) was modified with aniline groups at both the end, and then PEG‐PANI rod‐coil block polymers have been synthesized by polymerization of the aniline with the aniline‐modified PEG. FTIR, NMR, and elemental analysis provided the chemical strucutre of the as‐prepared polymers. The achiral rod‐coil copolymer could form different superstructures by means of self‐assembly when adding diethyl ether into its THF solution and the length of PANI segments is a key factor to the superstructures. AFM measurements revealed that they form spring‐like helical superstructures from the short PANI‐containing copolymers while these form fibrous helical superstructures from the longer PANI‐containing copolymer. A possible mechanism of the helical superstructures is suggested in this article and the driving force is believed the π–π stacking of the rigid segment of the copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 12–20, 2008  相似文献   

14.
Ultrasonically assisted in situ emulsion polymerization was used to prepare electrically conducting copolymer poly(aniline‐co‐p‐phenylenediamine) [poly(Ani‐co‐pPD)] and silica (SiO2) nancomposites. This approach can solve problems in the dispersion and stabilization of SiO2 nanoparticles in the copolymer matrix. It was found that the aggregation of SiO2 nanoparticles could be reduced under ultrasonic irradiation. Scanning transmission electron microscopy (STEM) confirmed that the resulting poly(Ani‐co‐pPD)/SiO2 nanocomposite particles were spherical in shape, in which SiO2 nanoparticles were well dispersed. The comonomer molecules were absorbed on the surface of SiO2 particles and then polymerized to form core–shell nanocomposite. The incorporation of SiO2 in the nanocomposite was supported by Fourier transform infrared spectroscopy (FT‐IR). UV‐visible spectra of the diluted colloid dispersion of nanocomposite particles were similar to those of the neat copolymer. Conductivity of nanocomposites was higher than the value obtained for the neat copolymer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Oxidative polymerization of aniline, anthranilic acid, and aniline‐co‐anthranilic acid by potassium dichromate Cr(VI) as an oxidant in acidic medium was investigated. In this study, the polymerization process of aniline, o‐anthranilic acid as well as aniline/o‐anthranlic acid using K2Cr2O7 produced, coordinated Cr(III)/polyaniline (PANI), Cr(III)/polyanthranilic acid (PAA) and Cr(III)/poly aniline‐co‐anthranilic acid (PANAA). The mechanism of polymerization reaction in the presence of dichromate was hypothesized. The precursor chromium doped polymers were characterized by TGA, FT‐IR, UV‐visible, XRD analyses. Cr2O3 nanoparticles size were determined using TEM analysis. The calcinations process of synthesized chromium doped PANI, PAA and PANAA yields Cr2O3 nanoparticles 26%, 31%, and 34% wt. respectively. Rhombohedral phase of Cr2O3 particles in the range from 33 to 61 nm was produced from chromium/polyanthranilic acid (PAA) and chromium/poly(aniline‐co‐anthranilic acid) PANAA. UV‐ visible analysis showed that optical band gaps (Eg) of doped poly aniline and its derivatives are in the range from1.55 to 1.80 using Tacu's law. The band gap values reveal that the doped chromium emeraldine base can be used as semiconductor materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The paper presents the electrostatic charge dissipative (ESD) properties of the conducting copolymers of aniline (AN) and 1‐amino‐2‐naphthol‐4‐sulfonic acid (ANSA) blended with low‐density polyethylene (LDPE). The copolymers of aniline and ANSA were synthesized under different reaction conditions. Blending of copolymers with LDPE was carried out in twin screw extruder by melt blending method by loading 0.5 and 1.0 wt% of the conducting copolymer in LDPE matrix. The mechanical properties of the blended films depend on the incorporation of copolymer in the LDPE matrix. The morphology of copolymer–LDPE blend was studied by scanning electron microscopy. The conductivity of the blown film of poly(AN‐co‐ANSA)/LDPE blend was found to be in the range of 10?6–10?11 S/cm, showing its potential use as antistatic bag for the encapsulation of electronic equipments. The static decay time of the film was found to be of the order of 0.1–1.9 sec on recording the decay time from 5000 to 500 V. Static charge measurements carried out on the films show that no charge is present on the surface. The level of interaction between the copolymers and the matrix polymer was determined by the FTIR spectra, blend morphology, electrical conductivity, and thermal analysis. The effect of the morphology on electrical and antistatic behavior of copolymers has also been investigated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Poly(aniline‐co‐ethyl 3‐aminobenzoate) (3EABPANI) copolymer was blended with poly(lactic acid) (PLA) and co‐electrospun into nanofibers to investigate its potential in biomedical applications. The relationship between electrospinning parameters and fiber diameter has been investigated. The mechanical and electrical properties of electrospun 3EABPANI‐PLA nanofibers were also evaluated. To assess cell morphology and biocompatibility, nanofibrous mats of pure PLA and 3EABPANI‐PLA were deposited on glass substrates and the proliferation of COS‐1 fibroblast cells on the nanofibrous polymer surfaces determined. The nanofibrous 3EABPANI‐PLA blends were easily fabricated by electrospinning and gave enhanced mammalian cell growth, antioxidant and antimicrobial capabilities, and electrical conductivity. These results suggest that 3EABPANI‐PLA nanofibrous blends might provide a novel bioactive conductive material for biomedical applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

18.

A novel type of imide‐amide monomer, 4‐maleimidobenzanilide (MB) i.e., N‐[4‐N′‐(phenylaminocarbonyl)phenyl]maleimide was synthesized from maleic anhydride, p‐aminobenzoic acid and aniline. Radical polymerization of MB and its copolymerization with MMA (methyl methacrylate), initiated by AIBN, were performed in THF solvent at 65°C. Nine copolymer samples were prepared using different feed ratios of comonomers. All the polymer samples have been characterized by a solubility test, intrinsic viscosity measurements, FT‐IR and 1H‐NMR spectral analysis, and thermo‐gravimetric analysis. The values of monomer reactivity ratios of MB‐MMA system (r1, r2) and the Alfrey‐Price parameters Q1 and e1 were determined.  相似文献   

19.
The structures of two 1:1 proton‐transfer red–black dye compounds formed by reaction of aniline yellow [4‐(phenyldiazenyl)aniline] with 5‐sulfosalicylic acid and benzenesulfonic acid, and a 1:2 nontransfer adduct compound with 3,5‐dinitrobenzoic acid have been determined at either 130 or 200 K. The compounds are 2‐(4‐aminophenyl)‐1‐phenylhydrazin‐1‐ium 3‐carboxy‐4‐hydroxybenzenesulfonate methanol solvate, C12H12N3+·C7H5O6S·CH3OH, (I), 2‐(4‐aminophenyl)‐1‐phenylhydrazin‐1‐ium 4‐(phenyldiazenyl)anilinium bis(benzenesulfonate), 2C12H12N3+·2C6H5O3S, (II), and 4‐(phenyldiazenyl)aniline–3,5‐dinitrobenzoic acid (1/2), C12H11N3·2C7H4N2O6, (III). In compound (I), the diazenyl rather than the aniline group of aniline yellow is protonated, and this group subsequently takes part in a primary hydrogen‐bonding interaction with a sulfonate O‐atom acceptor, producing overall a three‐dimensional framework structure. A feature of the hydrogen bonding in (I) is a peripheral edge‐on cation–anion association also involving aromatic C—H...O hydrogen bonds, giving a conjoint R12(6)R12(7)R21(4) motif. In the dichroic crystals of (II), one of the two aniline yellow species in the asymmetric unit is diazenyl‐group protonated, while in the other the aniline group is protonated. Both of these groups form hydrogen bonds with sulfonate O‐atom acceptors and these, together with other associations, give a one‐dimensional chain structure. In compound (III), rather than proton transfer, there is preferential formation of a classic R22(8) cyclic head‐to‐head hydrogen‐bonded carboxylic acid homodimer between the two 3,5‐dinitrobenzoic acid molecules, which, in association with the aniline yellow molecule that is disordered across a crystallographic inversion centre, results in an overall two‐dimensional ribbon structure. This work has shown the correlation between structure and observed colour in crystalline aniline yellow compounds, illustrated graphically in the dichroic benzenesulfonate compound.  相似文献   

20.
Electrochemical copolymerization of phenol and aniline was achieved on 304 stainless steel anodes in neutral water solution with an electrolyte of Na2SO4O4. Compared with pit corro-sion potential of different copolymer coatings, the best solution composition was 0.09 mol/L phenol and 0.01 mol/L aniline. Through infrared spectrum analysis, polyaniline structure was proved in phenol-aniline copolymer, as well as more side chains. Scanning electron mi-croscope was used to analyze microstructure of copolymer coating, taking advantage of part solubility of phenol-aniline copolymer in tetrahydrofuran, the bifurcate network structure was observed. The copolymer coating microstructure was summarized, compared with the performance of polyphenol coatings, the reasons of corrosion resistance enhancement with the addition of aniline in electropolymerization reaction was assumed as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号