首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
To obtain thermally stable and mechanically strong sodium and lithium conducting polymers, we prepared Na+ and Li+ poly(phenylene terephthalamide sulfonate salts) (MW ~ 5500). We also synthesized oligo(ethylene oxide) (3, 5, or 7 units of ethylene oxide) substituted ethylene carbonate and poly[oxymethylene-oligo(oxyethylene)]. These are high boiling point liquids with high dielectric constants as well as metal chelating properties. Polyelectrolyte systems were prepared by mixing Na+ or Li+ poly(phenylene terephthalamide sulfonate) salts with various amounts of modified ethylene carbonate and/or poly[oxymethylene-oligo(oxyethylene)]. Films (0.1–0.5 mm thick) obtained from the blends were found to have considerable mechanical strength; forming free standing films. The ionic conductivities of the Na+ and Li+ polyelectrolyte systems were 10?6?10?5 S/cm at 25°C. Thermal properties of these blend systems were investigated in detail. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
A complex ionic conductor was prepared by solution complexation of lithium methoxy oligo (oxyethylene) sulfonate (SOL8, where & is the repeating unit of oxyethylene) with comblike copolyether poly [methoxy oligo (oxyethylene)methacrylate-co-acrylamide] [P(MEO16-AM)]. The composition dependences of glass transition temperature,crystallinity as well as conducti-vity of the complex were investigated. DC polarization showed that the complex shows a stable polarization characteristic. Polarization reversing method confirmed that the complex has a cati-onic transference number of 0.99.  相似文献   

3.
低聚醚磺酸锂/梳形聚醚复合物的单离子导电性   总被引:1,自引:0,他引:1  
低聚醚磺酸锂/梳形聚醚复合物的单离子导电性郑云贵,万国祥(中国科学院成都有机化学研究所成都610041)关键词低聚醚磺酸锂,单离子导体,阳离子迁移数聚合物阳离子导体一般采用单体盐与能促进离子迁移的单体通过共聚或将其均聚物共混的方式制备’‘-‘’.由于...  相似文献   

4.
通过4-溴苯甲醇和三甲基硅基乙炔的Sonagashira偶联反应与三甲基硅基的脱除反应,合成4-乙炔基苯甲醇.以4-乙炔基苯甲醇为引发剂,以有机氮杂环化合物DBU为催化剂,常温常压下进行丙交酯的活性开环聚合反应,采用1H-NMR和GPC对产物结构、分子量与分子量分布进行表征分析,结果表明,合成以了苯乙炔为端基的聚乳酸大...  相似文献   

5.
The paper describes the synthesis and characterization of comb polymers by a two-step chemo-enzymatic process. In the first step macromonomers bearing unsaturation at the chain end were prepared by lipase catalyzed ring-opening polymerization (ROP) of ε-caprolactone (CL) and 1,5-dioxepane-2-one (DXO). The ROP was carried out in bulk at 60 °C under anhydrous conditions using 2-hydroxyethyl methacrylate (HEMA) as the initiator. The DP of the macromonomers was controlled by regulating the monomer: HEMA molar feed concentration. The macromonomers were then homo- or co-polymerized in the second step with alkyl methacrylate monomers (methyl methacrylate or HEMA) using AIBN initiated free radical polymerization. Characterization of the polymers was done by 1H NMR, SEC and DSC techniques.  相似文献   

6.
Highly efficient syntheses of poly(alkyl methacrylate)-based brush polymers were accomplished via a facile group transfer polymerization (GTP) and a consecutive grafting-through ring-opening metathesis polymerization. The GTP system, composed of the norbornenyl-methyl trimethylsilyl ketene acetal initiator and the N-(trimethylsilyl) bis(trifluoromethanesulfonyl)imide catalyst, rapidly and quantitatively generates norbornenyl-terminated poly(alkyl methacrylate) macromonomers with very narrow polydispersities (Mw/Mn < 1.10). The ring-opening metathesis polymerization of methacrylate macromonomers using Grubbs third generation catalyst successfully generated a group of methacrylate-based brush polymers, which assured the high quality of the macromonomers obtained from GTP.  相似文献   

7.
Endcapping of oligo(oxyethylene) glycols was carried out by transesterification of methyl N,N-dimethylaminobenzoate with sodium methoxide as the catalyst or by the reaction of sodium salicylate with the ditosyl ester of the oligo(oxyethyl-ene) glycols. Several other common reactions were tried for the endcapping of the oligo(oxyethylene) glycols but were found to be either more cumbersome or unsuccessful. All products were obtained in high yield and high purity. The reactions of tetraalkylammonium carboxylates with aliphatic halides were found to be very general and mild reactions for the preparation of esters in high yield and high purity. It was found that these reactions could be utilized for the preparation of esters on polymers even if the carboxylate group was directly attached to the polymer chain. It was also demonstrated that the aliphatic halide group could be on the polymer, as in the case of polyepichlorohydrin. Copolymers of epichlorohydrin and glycidyl N,N-dimethylaminobenzoate with up to 90% glycidyl benzoate as the comonomer were prepared, and poly(tetra-butylammonium methacrylate) was effectively transformed with 4-(2-bromoethoxy)-2-hydroxybenzophenone into the corresponding ester. The products were characterized by the usual spectral means.  相似文献   

8.
The characteristics of sodium 4-decyl naphthalene sulfonate (SDNS)/Triton X-100 (TX-100) and sodium dodecyl sulfonate (SDSN)/SDNS mixed micelles with different molar ratios were studied by 1D and 2D 1H NMR. In the mixed micelle of SDNS/TX-100 the phenoxy rings of the TX-100 are embedded in the near vicinity of the alkyl chains of SDNS and its polyoxyethylene segments, but the first oxyethylene group, to which the phenoxy ring is adjacent, are located near the naphthyl rings. In the mixed micelle of the SDNS/SDSN system the sulfonate groups of SDSN are embedded in the naphthyl rings of SDNS; i.e., they are located more internally in the mixed hydrophobic micellar core than those of SDNS. Moreover, the naphthyl rings of SDNS separating these sulfonate groups of SDSN may play an active role in weakening the electrostatic repulsion of the negatively charged sulfonate groups, which favors the mixed micelle aggregation.  相似文献   

9.
Poly[lithium-N(4-sulfophenyl) maleimide -co- methoxy oligo-(oxyethylene) methacrylates] [P(LiSMOEn)s] with three different oligoether side chains and different salt concentrations were synthesized. The copolyelectrolytes are essentially random in structure, with blocks of methoxy oligo(oxyethylene) meth-acrylate (MOEnM) recurring sporadically in between the salt units of N(4-sulfophenyl) maleimide. They all show two glass transitions in the temperature range of ?100 to 100°C. The first one below ?30°C is assigned to the oligo(oxyethylene) side chain (T g1), while the second one located between 20 and 50°C is attributed to the main chain of the polymer host (T g2). The maximum ionic conductivity of the copolymer electrolytes, 1.6 × 10?7 S cm?1 at 25°C, occurs at lithium salt concentration [Li+]/[EO] = 2.2 mol%. The ionic conductive behavior of the copolyelectrolytes follows the Vogel-Tammann-Fulcher (VTF) equation. Moreover, a special VTF behavior exists in the copolymers with shorter oligoether side chain and higher salt concentration. Sweep voltammetric results indicate that these copolyelectrolytes have a good electrochemical stability window.  相似文献   

10.
Copolymerization of methacrylic acid alkali metal salts (MAAM; M = Li, Na, K, Rb or Cs) and oligo(oxyethylene) methacrylate (MEO) was carried out in bulk or in poly(oligo(oxyethylene) methacrylate) (PMEO) at 60°C. The copolymers of MAAM and MEO which were obtained by bulk polymerization showed a cation conductivity of around 1 × 10?7 S/cm at room temperature. On the other hand, the copolymers obtained by radical polymerization in PMEO, showed a higher cation conductivity (10?6–10?5 S/cm). Furthermore, higher cation conductivity was observed for the copolymer systems containing alkali metal cations with a larger ion radius. This tendency was explained by the strength of the bond between alkali metal cation and ether oxygens. The degree of dissociation had little effect on this difference in the conductivity. The effective dissociation of methacrylic salts was enhanced in the copolymer compared to the homopolymer because of the suppression of the adjacent dissociative carboxylic acid groups. Arrhenius plots for ionic conductivity show the migration of ions along with the segmental motion of the polymer matrix.  相似文献   

11.
1,4-Dibromo-2,5-bis(bromomethyl)benzene and benzene-2,5-dibromomethyl-1,4-bis(boronic acid propanediol diester) were used as bifunctional initiators in Atom Transfer Radical Polymerization (ATRP) of styrene or in cationic ring opening polymerization (CROP) of tetrahydrofuran in conjunction with CuBr /2,2'-bipyridine or AgSbF6, respectively. The resulting well-defined macromonomers with low polydispersities, bearing functional groups as bromine or boronic ester were used in Suzuki or Yamamoto type couplings, leading to poly(p-phenylene)s (PPPs) with polystyrene (PSt), polytetrahydrofuran (PTHF) or alternating PSt/PTHF side chains. The new polymers were characterized by GPC, 1H-NMR, 13C-NMR, IR and UV analysis. Thermal behavior of the precursors PSt or PTHF macromonomers and the final polyphenylenes were investigated by TGA and DSC analyses and compared.  相似文献   

12.
Crosslinked copolymers with single Li~+-ionic conductivity were prepared from oligo (oxyethylene) methacrylate (MEO_n), methacryloyl alkylsulfonic acid lithium (SAMLi), and oligo (oxyethylene) dimethacrylate (DMEO_n). Li~+-ionic conductivity of the copolymer is improved by crosslinking and presented as a function of polymerization degree (n) in MEO_n, comonomeric salt concentration (O/Li), and crosslinking degree. The crosslinked copolymer P (0.7 MEO_(14)-0.3DMEO_(14)-SHMLi) without other small molecular additives exhibits an optimum Li~+-ionic conductivity of 1.2×10~(-6) S/cm at 25℃. Dc polarization test in the cell composed of Li/copolymer/Li shows a constant dc ionic conductivity which closes gradually to the ac one with decreasing dc polarization potential.  相似文献   

13.
A new family of crownophanes containing the fluorenone and naphthalene fragments linked by oligo(oxyethylene) bridges were synthesized. Reactions of these ligands with the paraquat dication gave inclusion complexes of the pseudorotaxane type that were detected by FAB mass spectrometry, 1H NMR spectroscopy, and electronic absorption spectroscopy. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 951–957, May, 2007.  相似文献   

14.
Amphiphilic 2,6-pyridylene ethynylene "meta-ethynylpyridine" polymers having chiral oligo(oxyethylene) side chains were developed as hosts for saccharide recognition. The polymers were prepared via a Sonogashira reaction and fractionated by gel permeation chromatography (GPC). They showed circular dichroism (CD) activity due to their higher-order chiral helical structures, and their CD and UV-vis spectra changed depending on not only saccharide recognition but also molecular size, temperature, and metal cation recognition.  相似文献   

15.
Abstract

Sodium 2-methacryloyl 3-[ω-methoxyl oligo(oxyethylene)] propylsulfonate was synthesized, from which homopolymer-based polyelectrolyte was prepared. The polyelectrolytes thus obtained show single Na+ionic conductivity at ambient temperature, neither adding plasticizer nor hybridizing small molecular salt. The conductivity depends considerably on the length of oligo(oxyethylene) side-chain. Optimally, the highest conductivity of 6.0 × 10?6 S/cm at 25°C is obtained when the number of (CH2CH2O) repeating units equals 16. Results indicate that the conductivity data follow WLF and VTF equations. The WLF parameters are found to be comparable with “universal” values, and analysis of the configuration entropy model suggests that the conduction of Na+ ions is carried out by an association mechanism.  相似文献   

16.
大分子单体的制备方法   总被引:1,自引:0,他引:1  
最常见的大分子单体是末端含碳—碳双键的烯类大分子单体,除此以外还有可开环聚合、可氧化偶联和可开环易位聚合的大分子单体等。本文介绍了大分子单体常用的制备方法。  相似文献   

17.
Living anionic polymerization has been utilized to synthesize hydroxy end-functionalized PMMA macromonomers with styryl or allyl functionalities as the polymerizable end-groups. Protected hydroxy-functionalized alkyl lithium initiators have been used to initiate anionic polymerization of MMA. Subsequently the living chains with protected hydroxyl function have been terminated using 4-vinylbenzyl chloride (4-VBC) or allyl methacrylate (ALMA) to form α-hydroxy-ω-styryl and α-hydroxy-ω-allyl PMMA, respectively. These protected hydroxy-functionalized PMMA macromonomers have been characterized by GPC and 1H-NMR. Termination using 4-VBC led to 50% functionalization, whereas that using allyl methacrylate led to 100% functionalization of the hydroxy-PMMA.  相似文献   

18.
Atom transfer radical polymerization was used to prepare well‐defined vinyl polyoxadiazole homomacromonomers with a properly modified α‐dicarboxylic acid methyl ester as the initiator. Macromonomers of various molecular weights with narrow polydispersities in some cases were obtained, as proved by gel permeation chromatography (GPC). The structures of the obtained macromonomers were then identified with 1H NMR spectroscopy. These macromonomers were subsequently copolymerized with a dihydroxy anthracene based monomer by a polycondensation technique, and this resulted in polymacromonomers. Coil–rod–coil copolymers containing side‐chain anthracene and oxadiazole units were also synthesized by atom transfer radical polymerization. The resulting copolymers combined an anthracene derivative as the rigid block with a random copolymer of the desired anthracene‐ and/or oxadiazole‐based monomers as the flexible block. These copolymers were primarily characterized with GPC and 1H NMR techniques. Additionally, the optical properties of all these copolymers were investigated in detail, and they suggested energy transfer from the oxadiazole to the anthracene chromophores, which became much more efficient in the solid state. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1049–1061, 2005  相似文献   

19.
Poly(ϵ-caprolactone) (PCL) and poly(2-methyloxazoline) (POx) substituted phenyl rings (macromonomers) and the corresponding substituted polyphenylene oligomers have been synthesized in various chemical structures. Macromonomers were synthesized by ring opening polymerization. Poly(phenylene) oligomers were then synthesized by cross-coupling of the macromonomers in Ni-catalyzed polycondensation reactions. The macromonomers and oligomers have been characterized by 1H-NMR, IR, GPC, and DSC. The effect of side chain chemistry and architecture on the resulting morphology in thin films has been investigated by atomic force micro-scopy and wide angle X-ray scattering. Polyphenylene oligomers showed layered morphologies in thin films. The orientation of the layers depended on the chemistry of the side chains and the backbone architecture. Linear oligomers containing statistically distributed segments having POx or PCL side chains showed layers perpendicular to the underlying substrate. Attachment of polystyrene end block to PCL chain together with the meta-connectivity of the backbone resulted in layers parallel to the substrate. Our results also indicate that substitution of polymeric chains to phenyl rings can induce ordered structures of macromonomers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2091–2104, 2007  相似文献   

20.
This paper describes the preparation and characterization of homopolymers of 3-oligo(dimethylsiloxane)thiophene macromonomers, V-VIII, and copolymers with 3-methylthiophene. The thiophene macromonomers were prepared by hydrosilylation reaction between ω-(Si-H)-oligo(dimethylsiloxane), I-IV, and 3-propenylthiophene using a platinum-divinyltetramethyldisiloxane complex as the catalyst. The products were characterized by 1H, 13C, 29Si NMR and IR spectroscopy; DSC (differential scanning calorimetry) and GPC studies. Two distinct glass transition temperatures are observed for poly[VIII], a Tg at −79 °C corresponds to the soft oligo(dimethylsiloxane) phase and the Tg at 190 °C corresponds to the hard thiophene backbone. Homopolymers of V and VI, and copolymers may be doped with I2 to generate electronic conductive material, a copolymer of poly[V]-co-poly[3-methylthiophene] (50/50, w/w) has an electronic conductivity value of 5 × 10−5 S/cm at 25 °C. The polymers are tractable and may be molded into thin films; a number of the polymers are soluble in organic solvents. Polythiophene modified with oligosilioxanes are biocompatibile; the polymers minimally interfere with the growth of HeLa cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号