首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The products evolved during the thermal decomposition of kaolinite–urea intercalation complex were studied by using TG–FTIR–MS technique. The main gases and volatile products released during the thermal decomposition of kaolinite–urea intercalation complex are ammonia (NH3), water (H2O), cyanic acid (HNCO), carbon dioxide (CO2), nitric acid (HNO3), and biuret ((H2NCO)2NH). The results showed that the evolved products obtained were mainly divided into two processes: (1) the main evolved products CO2, H2O, NH3, HNCO are mainly released at the temperature between 200 and 450 °C with a maximum at 355 °C; (2) up to 600 °C, the main evolved products are H2O and CO2 with a maximum at 575 °C. It is concluded that the thermal decomposition of the kaolinite–urea intercalation complex includes two stages: (a) thermal decomposition of urea in the intercalation complex takes place in four steps up to 450 °C; (b) the dehydroxylation of kaolinite and thermal decomposition of residual urea occurs between 500 and 600 °C with a maximum at 575 °C. The mass spectrometric analysis results are in good agreement with the infrared spectroscopic analysis of the evolved gases. These results give the evidence on the thermal decomposition products and make all explanation have the sufficient evidence. Therefore, TG–MS–IR is a powerful tool for the investigation of gas evolution from the thermal decomposition of materials and its intercalation complexes.  相似文献   

2.
The thermal degradation of N,N′-bis(2 hydroxyethyl) linseed amide (BHLA) was investigated by thermogravimetric analysis coupled with Fourier transform infrared spectroscopy and mass spectroscopy (TG–FTIR–MS). Thermogravimetric analysis revealed that the thermal degradation process can be subdivided into three stages: sample drying (<200 °C), main decomposition (200–500 °C), and further cracking (>500 °C) of the polymer. The compound reached almost 800 °C during pyrolysis and combustion. The activation energy at the second step during combustion was slightly higher than that of pyrolysis emissions of carbon dioxide, aliphatic hydrocarbons, carbon monoxide, and hydrogen cyanide, and other gases during combustion and pyrolysis were detected by FTIR and MS spectra. It was observed that the intensities of CO2, CO, HCN, and H2O were very high when compared with their intensities during pyrolysis, and this was attributed to the oxidation of the decomposition product.  相似文献   

3.
The breakdown mechanism of an aromatic polyamide and four polyimides has been studied under vacuum in the temperature range of 375–620°C, by using techniques described earlier, involving collection and analysis of volatile products as well as analyses of residues at different temperatures. The decomposition of the polyamide up to 375°C yielded predominantly carbon dioxide, while between 375 and 450°C about equal amounts of carbon dioxide and carbon monoxide formed. Hydrogen is the major product between 450 and 550°C, along with hydrogen cyanide, methane, and carbon monoxide. The major reaction at the lower temperatures seems to be the cleavage of the linkage between the carbonyl group and the ring, with subsequent formation of a carbodiimide linkage via isocyanate intermediates, and liberation of carbon dioxide. Alternatively, cleavage between the carboxyl and the NH-group leads to the formation of carbon monoxide. Carbon dioxide and carbon monoxide are also the major volatile decomposition products of the polyimides at the lower temperatures. The primary cleavage reaction is believed to be the rupture of the imide ring between a carbonyl and nitrogen, with subsequent formation of isocyanate groups. The latter react with each other to form carbodiimide linkages and carbon dioxide, while the remaining benzoyl radical is the source for carbon monoxide.  相似文献   

4.
The products evolved during the thermal decomposition of the coal-derived pyrite/marcasite were studied using simultaneous thermogravimetry coupled with Fourier-transform infrared spectroscopy and mass spectrometry (TG-FTIR–MS) technique. The main gases and volatile products released during the thermal decomposition of the coal-derived pyrite/marcasite are water (H2O), carbon dioxide (CO2), and sulfur dioxide (SO2). The results showed that the evolved products obtained were mainly divided into two processes: (1) the main evolved product H2O is mainly released at below 300 °C; (2) under the temperature of 450–650 °C, the main evolved products are SO2 and small amount of CO2. It is worth mentioning that SO3 was not observed as a product as no peak was observed in the m/z = 80 curve. The chemical substance SO2 is present as the main gaseous product in the thermal decomposition for the sample. The coal-derived pyrite/marcasite is different from mineral pyrite in thermal decomposition temperature. The mass spectrometric analysis results are in good agreement with the infrared spectroscopic analysis of the evolved gases. These results give the evidence on the thermal decomposition products and make all explanations have the sufficient evidence. Therefore, TG–MS–IR is a powerful tool for the investigation of gas evolution from the thermal decomposition of materials.  相似文献   

5.
During the combustion of tobacco, carbon monoxide is formed by the thermal decomposition of tobacco with primary products such as carbon dioxide and water. These three processes occur in parallel and are interdependent. The temperature ranges over which each process occurs, and their relative importance have been assessed by pyrolysing tobacco in the presence of various isotopically labelled gases. Non-isothermal pyrolyses were conducted at a heating rate of 1.6 K s?1 up to 1000°C, with the products analysed by mass spectrometer.Pyrolysis in the presence of oxygen-18 indicates that combustion of tobacco starts at 180°C. Carbon dioxide and water are formed by combustion at 180°C, while carbon monoxide is not formed as a combustion product until 460°C. The quantities of carbon monoxide and dioxide formed by thermal decomposition of tobacco above 400°C are significantly reduced by the occurrence of combustion.Pyrolysis in the presence of carbon-13 dioxide or carbon dioxide-18 shows that its major reaction, endothermic reduction to form carbon monoxide begins at 450°C. Pyrolysis in an oxygen-18/carbon-13 dioxide atmosphere has shown that this endothermic reduction of carbon dioxide occurs in parallel with the strongly exothermic oxidising reactions. 30% of the total carbon monoxide formed was produced by thermal decomposition of the tobacco. 36% was produced by combustion of the tobacco, and at least 23% was produced via carbon dioxide. The remainder was produced by an interaction of the carbon dioxide reduction and the oxidation. Similar proportion would be expected inside the reaction zone of a burning cigarette.Pyrolysis in the presence of heavy water has shown that the major reaction of the water is to quantitatively produce carbon monoxide and hydrogen above 600°C. Considerable isotopic exchange reactions also occur. Pyrolysis in the presence of carbon monoxide-18 has shown that carbon monoxide reacts with tobacco to a small extent at temperatures above 220°C mainly to abstract oxygen combined in the tobacco and produce carbon dioxide.A sequence of general chemical steps for the production of the carbon oxides and water during tobacco combustion has been deduced. This is based on the present work together with considerations of previously published studies on graphite and coal reactions.  相似文献   

6.
The thermal decomposition process of kaolinite–potassium acetate intercalation complex has been studied using simultaneous thermogravimetry coupled with Fourier-transform infrared spectroscopy and mass spectrometry (TG-FTIR-MS). The results showed that the thermal decomposition of the complex took place in four temperature ranges, namely 50–100, 260–320, 320–550, and 650–780 °C. The maximal mass losses rate for the thermal decomposition of the kaolinite–potassium acetate intercalation complex was observed at 81, 296, 378, 411, 486, and 733 °C, which was attributed to (a) loss of the adsorbed water, (b) thermal decomposition of surface-adsorbed potassium acetate (KAc), (c) the loss of the water coordinated to potassium acetate in the intercalated kaolinite, (d) the thermal decomposition of intercalated KAc in the interlayer of kaolinite and the removal of inner surface hydroxyls, (e) the loss of the inner hydroxyls, and (f) the thermal decomposition of carbonate derived from the decomposition of KAc. The thermal decomposition of intercalated potassium acetate started in the range 320–550 °C accompanied by the release of water, acetone, carbon dioxide, and acetic acid. The identification of pyrolysis fragment ions provided insight into the thermal decomposition mechanism. The results showed that the main decomposition fragment ions of the kaolinite–KAc intercalation complex were water, acetone, carbon dioxide, and acetic acid. TG-FTIR-MS was demonstrated to be a powerful tool for the investigation of kaolinite intercalation complexes. It delivers a detailed insight into the thermal decomposition processes of the kaolinite intercalation complexes characterized by mass loss and the evolved gases.  相似文献   

7.
The thermal degradation reactions of poly(1,3-phenylene isophthalamide) or Nomex (I) and poly(1,4-phenylene terephthalamide) or Kevlar (II) aramids have been investigated in the temperature range 300–700°C by pyrolysis/gas chromatography/mass spectrometry. The initial degradation products below 400°C of (I) are carbon dioxide and water. At 400°C benzoic acid and 1,3-phenylenediamine are detected. Benzonitrile, aniline, benzanilide, N-(3-aminophenyl)benzamide as well as carbon monoxide and benzene are evolved in the range 430–450°C. The yields of these products increase rapidly in the range 450–550°C. Isophthalonitrile is observed at 475°C and hydrogen cyanide is detected above 550°C, as are other secondary products such as toluene, tolunitrile, biphenyl, 3-cyanobiphenyl and 3-aminobiphenyl. Pyrolysis of (II) below 500°C evolves only water and trace amounts of carbon dioxide. At 520–540°C the following degradation products have been detected: 1,4-phenylenediamine, benzonitrile, aniline, benzanilide and N-(4-aminophenyl)benzamide. These products as well as carbon dioxide and water increase appreciably between 550°C and 580°C; benzoic acid, terephthalonitrile, benzene and 4-cyanoaniline are also detected in this temperature range. Above 590°C, hydrogen, carbon monoxide, hydrogen cyanide, toluene, tolunitrile, biphenyl, 4-aminobiphenyl and 4-cyanobiphenyl are evolved. Degradation reactions consistent with the formation of these products, which involve initial heterolytic cleavage of the amide linkage for (I) and initial homolytic cleavage of the aromatic NH and amide bonds for (II), are described.  相似文献   

8.
The thermal degradation of an equimolar copolymer of 2-bromoethyl methacrylate and acrylonitrile occurs in two well defined steps. Below 310°C, ethylene, carbon dioxide, vinyl bromide, acetaldehyde and 1,2-dibromoethane are the principal products and certain well defined chemical changes in the residual polymer are revealed by infra-red spectroscopy. In the second stage, which occurs in the range 250–500°C, propane, isobutene, carbon dioxide, hydrogen cyanide and isocyanic acid are the principal volatile products, as well as a substantial yellow coloured chain fragment fraction.All of these—and certain additional trace products—have been accounted for mechanistically.  相似文献   

9.
The studies on the synthesis and thermal properties of linear neryl diesters were presented. The linear neryl diesters can be successfully obtained during butylstannoic catalyzed esterification process. The final conversion of nerol and carboxylic groups was higher than 95 % using a stoichiometric molar ratio of reagents in mild conditions. The high yield products were prepared after longer time than previously studied geranyl diesters. It was directly connected with the steric hindrance and lower susceptibility of nerol to esterification process than geraniol. The TG/FTIR/QMS studies proved that the thermal properties and decomposition mechanism of neryl diesters differ considerably in inert and oxidative atmosphere. The diesters were thermally stable up to 200 °C in inert atmosphere. Their decomposition was run as a one-step process. The analyses of the volatile products emitted during their pyrolysis indicated on the ester and O-neryl bonds cleavage. It resulted in the formation of monoterpene hydrocarbons, cyclic acid anhydrides, ketones, or aldehydes. However, the studied compounds were less thermally stable in air than in helium. Their decomposition happened in two steps. The first step ranges from 185–228 °C to almost 326–380 °C with mass loss above 88 %. The formation of acyclic or alicylic monoterpene hydrocarbons, cyclic acid anhydrides, ketones, alkenes, alkanes, carbon dioxide, and water was expected. It indicated on the asymmetrical distrupt of the bonds, partial oxygenation, and decarboxylation of emitted gaseous fragments. The second step of decomposition was observed in temperatures ranges from 380 to above 560 °C. In this step carbon dioxide and water were mainly emitted. It was the result of the oxidation of the residue formed during the fist step.  相似文献   

10.
Precursor powders for yttrium aluminum garnet (YAG) were synthesized by solution combustion reactions (nitrate–glycine reaction with stoichiometric and sub-stoichiometric amount of fuel) and simple decomposition of nitrate solution. The TG-DTA, FTIR and XRD analyses of the precursors and the typical heat-treated samples were carried out to understand the processes occurring at various stages during heating to obtain phase pure YAG. Precursors from all the reactions exhibited dehydration of adsorbed moisture in the temperature range of 30 to 300°C. The precursor from nitrate–glycine reaction with stoichiometric amount of fuel (precursor- A) contained entrapped oxides of carbon (CO and CO2) and a carbonaceous contaminant. It exhibited burning away of the carbonaceous contaminant and crystallization to pure YAG accompanied by loss of oxides of carbon in the temperature ranges of 400 to 600 and 880 to 1050°C. The precursor from simple decomposition of nitrates (precursor-B) exhibited denitration cum dehydroxylation and crystallization in the temperature ranges of 300 to 600 and 850 to 1050°C. The precursor from nitrate–glycine reaction with sub-stoichiometric amount of fuel (precursor-C) contained entrapped carbon dioxide and exhibited its release during crystallization in the temperature range of 850 to 1050°C. This study established that, in case of metal nitrate–glycine combustion reactions, crystalline YAG formation occurs from an amorphous compound with entrapped oxides of carbon. In case of simple decomposition of metal nitrates, formation of crystalline YAG occurs from an amorphous oxide intermediate.  相似文献   

11.
Polyimide films from 4,4′-diaminodiphenyl ether and pyromellitic dianhydride were pyrolyzed at 400–600°C. in non-oxidative systems. Major gaseous products were carbon monoxide and carbon dioxide; hydrogen evolution occurred above 525°C. A mobile n-imide-isoimide equilibrium is in accord with the gas evolution data. Carbon dioxide arises from isoimide decomposition and carbon monoxide arises from the normal imide.  相似文献   

12.
The thermal decomposition of sodium ethyl xanthate (SEX) was used to compare the techniques of pyrolysis-gas chromatography-mass spectrometry (py-GC-MS), thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR), and TG-MS. In the py-GC-MS analysis, SEX was pyrolysed at 400°C in an inert atmosphere. Major gases evolved were carbon disulfide, diethyl sulfide, ethanol, and carbonyl sulfide. The TG of SEX exhibited a sharp mass loss at 201°C (42.3%) and a gradual mass loss at 217-325°C (20.8 %). The MS spectra of the evolved gases were complex due to overlapping of molecular, isotope, and fragment ion signals. Using the MS in selected ion monitoring mode, the major gases evolved were found to be carbon disulfide and carbonyl sulfide. The FTIR spectra of the evolved gases displayed vibrational frequencies due to alkanes, carbonyls, carbonyl sulfide, and carbon disulfide. From the analyses it was concluded that py-GC-MS provided unambiguous gas identification. Interpretation of the MS results was reliant on the py-GC-MS results, and the FTIR data was limited to identifying gases with very characteristic vibration frequencies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
When tobacco is pyrolysed under non-isothermal flow conditions in an inert atmosphere, variation of the inert gas or its space velocity has only a minor effect on the profiles of formation rate versus temperature for seven product gases. Thus, mass transfer processes between the tobacco surface and the gas phase are very rapid, and the products are formed at an overall rate which is determined entirely by that of the chemical reactions.The effect of radical chain inhibitors (nitrogen oxides) on the pyrolysis is complex because of the resultant oxidation. Nevertheless, no evidence was found for the occurrence of radical chain reactions in the gas phase. A small proportion (less than 10%) of all the gases monitored are formed by homogeneous decomposition of volatile and semi-volatile intermediate products, in the furnace used.At temperatures above about 600°C the reduction of carbon dioxide to carbon monoxide by the carbonaceous tobacco residue becomes increasingly important. However, when tobacco is pyrolysed in an inert atmosphere, only a small amount of carbon dioxide is produced above 600°C and consequently its reduction to carbon monoxide contributes only a small proportion to the total carbon monoxide formed above that temperature. The rate of the tobacco/carbon dioxide reaction is controlled by chemical kinetic rather than mass transfer effects. Carbon monoxide reacts with tobacco to a small extent.When the tobacco is pyrolysed in an atmosphere containing oxygen (9–21% v/v), some oxidation occurs at 200°C. At 250°C the combustion rate is controlled jointly by both kinetic and mass transfer processes, but mass transfer of oxygen in the gas phase becomes increasingly important as the temperature is increased, and it is dominant above 400°C. About 8% of the total carbon monoxide formed by combustion is lost by its further oxidation.The results imply that inside the combustion coal of a burning cigarette the actual reactions occurring are of secondary importance, the rate of supply of oxygen being the dominant factor in determining the combustion rate and heat generation. In contrast, in the region immediately behind the coal, where a large proportion of the products which enter mainstream smoke are formed by thermal decomposition of tobacco constituents, the chemistry of the tobacco substrate is critical, since the decomposition kinetics are controlled by chemical rather than mass transfer effects. tobacco substrate is critical. In addition, the heat release or absorption due to the pyrolytic reactions occurring behind the coal will depend on the chemical composition of the substrate. Thus, together with the differing thermal properties of the tobacco, the temperature gradient behind the coal should depend on the nature of the tobacco.  相似文献   

14.
The formation of nanosized copper particles in a nanoreactor based on the [LiAl2(OH)6]2[Cuedta]·nH2O supramolecular system [Li-Al-Cu(edta)] was studied by the DTA, XRPA, FMR, IR, and mass spectrometry methods. Thermal decomposition of Li-Al-Cu(edta) below 200°C occurs as two-stage removal of the interlayer water molecules. Above 200°C dehydration of [LiAl2(OH)6]+ metal hydroxide layers occurs simultaneously with destruction of [Cuedta]2? complexonate ions. The first stage of destruction (below 250–260°C) is a redox process that forms metallic copper and liberates gaseous carbon oxide and dioxide. At higher thermolysis temperatures, other gaseous products evolve (ammonia, hydrogen). The copper phase appeared during thermal decomposition as 20–50 nm isometric particles on the surface, while lenslike copper nanoparticles formed in the bulk substance.  相似文献   

15.
Three different products were obtained from the pyrolysis of dry peel sweet orange: bio-oil, char and non-condensable gases. The yield of each product was determined. The bio-oil was characterized by GC–MS to determine that can be used as a renewable source of valuable industrial chemicals or as a source of energy, high heating value was calculated by Channiwala and Parikh correlation based on Dulong's Formula.Thermogravimetric analysis at 1, 5, 10, 20, and 40 °C/min, shows three different overlapped steps resulting in an average mass loss of ∼80% within the temperature range of 114–569 °C. The bench scale pyrolysis experiments, produces average yields of 53.1, 21.1 and 25.8 wt.% for bio-oil, char and gases, respectively. Bio-oil characterization by GC–MS and FTIR identified limonene as its main component while other identified compounds included δ-limonene, alcohols, phenols, benzene, toluene, xylene and carboxylic acids.  相似文献   

16.
The study describes the thermal properties of porous microspheres synthesized with functional monomer 4-vinylpyridine (4VP) and crosslinking agent trimethylolpropane trimethacrylate (TRIM). Polymeric 4VP–TRIM microspheres were prepared via seed polymerization, using polystyrene microbeads as a shape template. The resulting 4VP–TRIM microspheres were in the range of 9–12 μm, with specific surface area of about 200 m2 g?1. The thermal properties of 4VP–TRIM materials were evaluated by thermogravimetry and differential scanning calorimetry. By TG/FTIR/MS, it was observed that new porous materials exhibited multi-staged decomposition patterns, different from poly(TRIM) microspheres. DSC and TG experiments showed that water molecules were absorbed on the materials’ surface. The synthesized 4VP–TRIM microspheres exhibited rather high thermal stability. Their initial decomposition temperature was about 300 °C. During the microspheres’ decomposition, an evolution of carbon dioxide, water, and carbon monoxide as main gases, as well as of pyridine and aliphatic compounds, was observed. It was confirmed that the evolved pyridine accelerated the degradation of copolymeric network.  相似文献   

17.
In this work a continuous investigation of the thermal behavior of two heavy crude oils, P2 and P4, from Brazilian basin was performed using simultaneous technique TG-DSC-FTIR. In previous publication—Part 1, about these same oils at nitrogen atmosphere, it was identified for P2 sample that the main evolved component was 1-dodecyl-4-octyl-cyclohexane at 450 °C and for P4 sample the main component was evolved at 340 °C referent to 1-methyl cyclohexene. The simultaneous technique TG/FTIR was also performed for the present study in synthetic air atmosphere and was more elucidative than analysis in nitrogen atmosphere. For heavy oil P2, there was identified the presence of carbon dioxide, carbon monoxide and 4-methylcyclohexanone at 382 °C. Whilst for sample P4 the gaseous components evolved at 454 °C were carbon dioxide, carbon monoxide and 1-methylcyclohexene. Also differences in TG analysis for both samples were observed regarding the number of components. In air atmosphere crude oil P2 exhibited three decomposition stages, in nitrogen were only two. Four stages were exhibited on the thermogravimetric curve for oil P4 in synthetic air, while in nitrogen atmosphere there were three stages. Thus, this study has a unique character regarding the use of combined simultaneous techniques as STA/FTIR to identify components in heavy oil which may contribute to upgrade methods referring to crude oil composition.  相似文献   

18.
The thermal degradation of polyphenylenes and poly(phenylene oxides) was studied under vacuum at temperatures between 350 and 620°C. The volatile and solid degradation products were analyzed by mass spectroscopy, infrared spectroscopy, and elemental analysis. Overall mechanisms for the thermal breakdown have been proposed. Polyphenylene decomposes to form polymer carbon, while hydrogen is the major volatile product. Some ring breakdown occurs with evolution of methane. Poly(phenylene oxide) forms mainly low molecular weight chain fragments, partially with hydroxyl endgroups. Some of the ether linkages decompose with ring breakdown, yielding carbon monoxide, water, and some carbon dioxide. Pendent groups on polyphenylenes and poly(phenylene oxides) are removed at the lower temperatures. The hydroxyl group yields essentially carbon monoxide and dioxide (the carbon being supplied by the rings), the methyl group methane, and the methoxy group methane and some methanol.  相似文献   

19.
A DEN 438 epoxy novolac–Nadic methyl anhydride-cured polymer was pyrolyzed in vacuum at temperatures to 800°C. Detailed analyses of the products have yielded information on the mechanism of decomposition. Two thirds of the weight loss of the polymer results in formation of relatively involatile high molecular weight gases. Carbon dioxide evolution indicates that at least 50% of the initial anhydride forms diester groups. The degradation of diester sites yields methylcyclopentadiene that is almost entirely decomposed to carbonaceous char.  相似文献   

20.
This paper deals with the thermal stability and decomposition behavior of brominated butyl rubber‐based damping material (BRP). The raw materials, butyl rubber matrix (IIR) and brominated phenolic resin (PF), were also investigated as control. IIR shows one decomposition stage, while PF shows four weight loss stages. Flynn‐Wall‐Ozawa calculation indicates that BRP has thermal stability between IIR and PF. Thermogravimetric analysis–Fourier transform infrared (TGA‐FTIR) and pyrolysis–gas chromatography/mass spectrometry (GC/MS) were used to investigate the volatile products under nitrogen atmosphere. As expected, BRP shows combined thermal decomposition behavior of both IIR and PF. The degradation mechanism of BRP was proposed, which is not significantly influenced by the incorporation of PF. The application stability of BRP is worth to be noticed since the post‐cure effect, that is, the free radicals remained from vulcanization would cause additional cross‐linking when stored at 80°C to 120°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号