首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
采用熔盐法合成了YVO4∶Sm3+红色发光材料. 用X射线粉末衍射对其结构进行表征, 证实样品为具有锆石结构的YVO4相; 测定了样品的激发与发射光谱; 分析了不同的掺杂浓度和烧结温度对样品发光强度的影响. 研究结果表明, 采用熔盐法合成的样品均可以产生Sm3+的特征发射, 但是与其它方法相比, 熔盐法合成样品位于647 nm处Sm3+的4G5/2-6H9/2发射明显得到加强, 从而使得样品发出明亮的红光, 而不是其它合成方法获得的橙色光. 当掺杂浓度为1%(摩尔分数)且在500 ℃下烧结5 h后, 熔盐法得到的YVO4∶Sm3+荧光粉的发光强度最大.  相似文献   

2.
钨钼酸盐荧光粉基质组成及其退火过程对荧光性能的影响   总被引:1,自引:0,他引:1  
采用高温固相法合成了一系列Eu3+掺杂的钨钼酸盐红色荧光粉CaxSr0.88-x(WO4)y(MoO4)1-y:0.08Eu3+。对其晶体结构和荧光性能进行了X射线衍射(XRD)、荧光光谱(PL)的表征,研究了不同Sr/Ca和WO4/MoO4比例对荧光粉光谱性能的影响,初步研究了不同退火过程对其发光性能的影响。所合成的Ca0.70Sr0.18(MoO4)0.5(WO4)0.5:0.08Eu3+荧光粉发光强度较好,可以被近紫外光(395 nm)和蓝光(465nm)有效激发,发射峰位于616 nm(Eu3+的5 D0→7 F2跃迁)。  相似文献   

3.
采用高温固相方法合成了(YxGd1-x)(P0.5W0.5)O4:Eu0.15粉末状发光材料,经X衍射分析结构发现,当Y3+/Gd3+≤3∶7时,样品主要由Gd2WO6相和Gd PO4相组成,当Y3+/Gd3+接近或等于1∶1时,合成的样品由Gd2WO6相、Gd PO4相和Gd0.5Y0.5PO4相三相组成,当Y3+/Gd3+≥7∶3时,合成的样品由Gd2WO6相与Gd0.5Y0.5PO4相组成。研究了样品在蓝光激发下的光谱性质,讨论了Y3+/Gd3+的掺杂对材料发光性能的影响,发现当Y3+/Gd3+=7∶3时,样品发光强度最高。在蓝光激发下,样品的发射光谱主峰在611.5 nm,对应于Eu3+的5D0→7F2电偶极跃迁。在添加助熔剂试验中发现,粉体中加入NH4NO3做助熔剂效果最好,其最佳掺入浓度为3%(质量分数)。  相似文献   

4.
用高温固相反应法制备了稀土离子Eu^3+掺杂的三元稀土硼酸盐Ba3Gd(BO3)3发光材料,通过X射线衍射(XRD)、荧光光谱和扫描电镜(SEM)等测试手段对Ba3Gd(BO3)3∶Eu^3+荧光粉的制备条件、发光性能以及形貌进行了研究。XRD结果表明,在1000℃时可得到Ba3Gd(BO3)3纯相。扫描电镜照片显示颗粒基本为球形,粒径约为200-400 nm。发光光谱测试表明,Ba3Gd(BO3)3∶Eu^3+荧光粉在近紫外区(UV)(396 nm)和蓝光区(466 nm)可以被有效地激发,分别用255和396 nm的紫外光激发样品时,以Eu3+的5D0-7F2(611和616 nm)超灵敏跃迁为主要发射峰。当Eu3+的掺杂浓度为10%(摩尔分数)时,Ba3Gd(BO3)3∶Eu3+在611和616 nm处的发光强度最大。因此,这种荧光粉是一种可能应用在白光LED上的红色荧光材料。  相似文献   

5.
Ca1-xZnxTiO3:Pr3+的固溶特性及其发光性能   总被引:2,自引:0,他引:2  
通过高温固相合成法制备了名义组成为Ca1-xZnxTiO3:Pr^3+(x=0.0~0.20)的红色发光材料,采用XRD和光谱等手段研究微量Zn掺杂的单相Ca1-xZnxTiO3:Pr^3+材料的晶体结构参数与发光性能,分析了等价Zn^2+的掺杂对固溶体结构参数与发光性能的影响规律。结果表明,在x≤0.01微量Zn掺杂时,Zn取代Ca形成单相Ca1-xZnxTiO3:Pr^3+固溶;其晶胞参数和晶胞体积,260和330nm两激发带以及610nm发射峰强度均随Zn掺量增加快速减小,且发光强度与晶胞参数的变化规律相吻合。分析表明这种变化与Zn取代Ca形成的固溶结构有关。  相似文献   

6.
首先用水热法合成了NaNbO3样品,然后用固相法分别合成了NaNbO3,NaNbO3:Er3+,NaNbO3:Sm3+样品,X射线衍射结果表明所制备的粉体NaNbO3(水热法200℃和固相法900℃退火),NaNbO3:Er3+(900℃退火),NaNbO3:Sm3+(900℃退火)为立方相结构,在退火温度800,950和1000℃时是正交晶系,长方体结构.该粉末在980 nm LD激发下,分别发射出中心波长约为526 nm绿色,547nm绿色和662 nm红色(掺Er3+)、526 nm绿色,550 nm绿色和660 nm红色(掺Sm3+)的上转换荧光.探讨了Er3+,Sm3+的上转换发光机制.研究了晶体的对称性和退火温度对NaNbO3:Er3+样品上转换发光强度的影响,结果表明,随着晶体的对称性降低和退火温度的提高,NaNbO3:Er3+样品的上转换发光强度增强.  相似文献   

7.
以Sm3+作为激活剂,Bi3+作为辅助激活剂,采用水热法合成Ca1-x-ySmxBiySi O3前驱体,然后在1 100℃焙烧得到系列橙红色荧光粉。用X-射线衍射仪、扫描电镜和荧光分光光度计和傅里叶变换红外光谱等手段对样品的组成、结构和形貌及其发光性质进行分析和表征。分析结果表明:产物都为三斜晶系结构的Ca1-x-ySmxBiySi O3和四方结构的方石英Si O2共熔体。在405 nm近紫外光激发下,产物的发射光谱由3个峰组成,发射峰值位于566、606和650 nm处,分别归属于Sm3+的4G5/2→6HJ/2(J=5,7,9)跃迁。产物的激发光谱在405 nm有很强的发射带,与近紫外LED芯片匹配。随着Sm3+掺量的增加,样品发光强度先增强后减弱,当Sm3+的物质的量分数为3%时发光强度达到最大,浓度猝灭机理为电偶极-电偶极相互作用。当Bi3+的物质的量分数在0.3%~1.5%时,对产物Ca0.97Sm0.03Si O3的荧光强度起敏化作用。Sm3+和Bi3+的最佳物质的量分数分别为3%和0.5%。  相似文献   

8.
Gd_2O_3:Eu~(3+)纳米棒的制备与发光性能   总被引:3,自引:2,他引:1  
在表面活性剂辅助的水热条件下合成出尺寸均一的Gd2O3:Eu3+纳米棒,对其结构和荧光性质进行了表征,并对其生长机理进行了初步讨论.XRD结果表明,水热前驱体样品为六方晶相的Gd(OH)3,经过灼烧之后样品为立方相的Gd2O3.TEM照片表明,所得样品为直径60 nm,长度约600 nm的纳米棒.荧光光谱表明,在波长为254 nm 的紫外光激发下,Gd2O3:Eu3+纳米棒产生了不同于前驱体的特征红光发射,对应于Eu3+ 的5D0-7F2跃迁,表明Gd2O3是红色发光材料的良好基质.  相似文献   

9.
在表面活性剂辅助的水热条件下合成出尺寸均一的Gd2O3∶Eu3+纳米棒, 对其结构和荧光性质进行了表征, 并对其生长机理进行了初步讨论. XRD结果表明, 水热前驱体样品为六方晶相的Gd(OH)3, 经过灼烧之后样品为立方相的Gd2O3. TEM照片表明, 所得样品为直径60 nm、长度约600 nm的纳米棒. 荧光光谱表明, 在波长为254 nm 的紫外光激发下, Gd2O3∶Eu3+纳米棒产生了不同于前驱体的特征红光发射, 对应于Eu3+ 的5D0-7F2跃迁, 表明Gd2O3是红色发光材料的良好基质.  相似文献   

10.
用微乳液法合成出SiO2包覆的Yb3+,Er3+离子舣掺杂的Gd2O3粉体,X射线衍射结果表明所制备粉体为立方Gd2O3结构.透射电镜照片显示其颗粒形状近似为球形,粒径为10~40 nm;该粉体在波长为980 nm的半导体激光器激发下发射出中心波长为562 nm的绿色和660 m的红色上转换荧光,分别对应于Er3+离子的4S3/2/2H11/2→4I15/2跃迁和4F9/2→4I15/2跃迁.发光强度和激发功率关系的研究揭示其均为双光子过程,能量传递和激发态吸收是上转换发光的主要机制.由于其具有高效的上转换发光性能,而经过纳米复合后制成的纳米Gd2O3(核)/SiO2(壳),容易溶于水并易于和有机物结合,能与生物分子结合.  相似文献   

11.
采用Pechini法合成了白光LED用红色荧光粉La1.9-xMoO6:0.10Eu3+,xLi+(x=0,0.10,0.20,0.25),并对样品分别进行了X射线衍射(XRD)、扫描电子显微镜(SEM)、电子能谱(EDX)以及荧光光谱(PL)等技术手段分析。 PL光谱显示该荧光粉可被近紫外光(395 nm)和蓝光(466 nm)有效激发,产生616和623 nm强的红光发射,归属于Eu3+5D07F2电偶极跃迁。该荧光粉与近紫外LED芯片(370~410 nm)和蓝光LED芯片(450~470 nm)均匹配良好,具有潜在的商业应用价值。 共掺Li+离子作为敏化剂能显著提高荧光粉的发光强度,且最优掺杂量为x=0.20。  相似文献   

12.
采用高温固相法制备了新型KCaY1-x(Mo04)3:Eux红色荧光粉.利用X射线衍射(XRD)、扫描电镜(SEM)和荧光光谱技术对粉体进行了结构、表面形貌和发光性能表征.结果表明:该系列荧光粉均为四方晶系的白钨矿结构,能够被近紫外光(394 nm)和蓝光(465 nm)有效激发,产生Eu3的5 D0→7 F2特征跃迁红光发射(613 nm).对这种荧光粉作后处理,可改善其表面形貌,并提高其发光强度.该系列荧光粉在394,465 nm的吸收与目前广泛应用的近紫外和蓝光LED芯片的输出波长相匹配.因此这种荧光粉是一种可能应用在白光LED上的红色荧光粉材料.  相似文献   

13.
Tb掺杂SiO2-B2O3-NaF玻璃的制备及发光性质   总被引:5,自引:0,他引:5  
使用正硅酸乙酯、硼酸和氟化钠为前驱体,0.10 mol•L-1TbCl3溶液为掺杂剂,通过溶胶-凝胶方法制备了Tb3+掺杂的SiO2-B2O3-NaF玻璃,研究了Tb3+在SiO2-B2O3-NaF体系中的发光性质,结果显示发光体能产生强的绿色发光(544 nm),归属于Tb3+的5D4—7F5电子跃迁.Tb3+含量不同时,除发光强度不同外,其发射光谱基本相同,并且在低掺杂Tb3+样品和低退火温度样品中检测到了来自5D3跃迁产生的峰,其跃迁随Tb3+掺杂浓度的增加和退火温度的升高而发生猝灭,这种现象归因于5D3-5D47F6—7F0和/或5D3—7F07F6—5D4跃迁中发生了交叉弛豫现象.Tb3+在SiO2-B2O3-NaF玻璃中的激发光谱由一个宽峰和一系列窄峰组成,宽峰最大波长位于230 nm,对应于Tb3+的4f 8—4f 75d 1跃迁,一系列窄峰位于300~380 nm处,归属于4f 8跃迁,所有发光材料的XRD和TEM测试显示材料是非晶态的.  相似文献   

14.
用固相反应法合成了具有单相的Li2EuSiO4结构的Li2Sr1-x-ySiO4:xCe3+,yTb3+系列样品。荧光光谱研究表明,Li2SrSiO4:Ce3+发射很强的蓝光,最强的激发峰位于360 nm;而Li2SrSiO4:Tb3+发射很强的绿光,最强的激发激发峰位于243 nm,但在350~410 nm的激发非常微弱。在Ce3+,Tb3+共掺杂的样品Li2Sr0.99-ySiO4:0.01Ce3+,yTb3+中,观察到Ce3+对Tb3+的共振能量传递。由于Ce3+对Tb3+能量传递,Tb3+的激发光谱中出现360 nm附近的宽激发峰。控制Tb3+/Ce3+掺杂浓度比可以实现绿蓝双基色的调制。这种双基色的荧光粉有望在紫外激发的白光LED中获得应用。  相似文献   

15.
目前市售硼酸镉、钒酸钇和砷酸盐等灯用红色荧光粉,发射波长一般在610nm左右,呈桃红色。砷酸盐荧光粉掺红颜料,因而看到的是颜料的颜色,砷酸盐还有毒。因此,研制一种发射波长长,原料无毒的大红单色荧光粉有着重要的意义。关于金属离子Mn~(2+)、Cr~(3+)、Co~(2+)和Ni~(2+)在LiAl_5O_8中的发光特性已有研究。本文报导激活剂Fe~(3+)离子浓度和烧结温度对Fe~(3+)在LiAl_5O_8中发光性质的影响,并对该荧光粉的发光机制和效率等进行讨论。  相似文献   

16.
采用高温固相烧结法成功制备了Ba5-3x/2B4O11xEu3+(x=0.02~0.22)荧光粉,利用XRD和SEM等对荧光粉进行了结构和形貌表征。 在激发波长为393 nm的条件下,发射峰(596、621、657和706 nm)与Eu3+5D0-7FJ(J=1,2,3,4)电子跃迁相对应,其中621 nm最强发射峰由Eu3+离子5D07F2电偶极跃迁造成。 文章还研究了Eu3+掺杂浓度对Ba5-3x/2B4O11xEu3+发光性能的影响,结果表明,荧光粉的发光强度随着Eu3+掺杂量的增加呈现先增大后减小的趋势,Eu3+最佳掺杂量为0.16。  相似文献   

17.
掺铥硫氧化钇的特殊余辉性质   总被引:12,自引:2,他引:10  
迄今为止,稀土长余辉磷光体已见文献或专利公开报道的激活离子主要有适于紫外光激发的三价铈离子(Ce3+)和三价镨离子(Pr3+)、适于可见光激发的铕离子(Eu3+和Eu2+)及钐离子(Sm3+,Sm2+),尚未涉及到铥离子Tm3+或Tm2+.我们在Tm3+离子激活的硫氧化钇体系Y2O2S:Tm3+中发现了长余辉荧光特性.特别是在该磷光体中还发现了一种非常特殊的余辉现象.  相似文献   

18.
The elementary reaction of C2H3+ NO has been reported for the first time in this paper.C2H3 radical was produced by laser photolysis of vinyl bromide at 248 nm. Vibrationally excited reaction products H2CO,NCO and HCN were observed. Two exothermic reaction channels leading to HCN+ H2CO and CH3+ NCO are identified.  相似文献   

19.
采用高温固相法合成了Ca9La(PO4)7:Dy3+发光材料. 荧光粉的晶体结构和微观尺寸由X射线粉末衍射(XRD)仪和扫描电子显微镜(SEM)测定. 光致激发和发射光谱发光揭示了材料的光学特性. 实验结果显示: Ca9La(PO4)7:Dy3+能够有效吸收紫外-可见光(300-460 nm)而被激发, 呈现一系列的吸收峰. 样品在350 nm近紫外光激发下, 有较强的蓝光(481 nm)和黄光(573 nm)两个窄带发射, 混合成优质的白光发射, 该白光色坐标在国际照明委员会(CIE)色品图中分布在无色点D65 (0.313, 0329)周围. 随着掺杂Dy3+离子的摩尔分数的增加, 两种发射均发生浓度猝灭现象, Dy3+离子的最佳掺杂为0.05(摩尔分数), 电偶极-电偶极相互作用是主要的猝灭机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号