首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
由于钠资源价格低廉、分布广泛等优点,钠离子电池及其关键电极材料的研究近年来引起了广泛的关注.然而,与锂相比,钠的离子半径大得多,使其在储钠材料中的迁移速度过慢而严重地限制了钠离子电池倍率性能的提升和储钠容量的表达,而且钠元素具有更高的相对原子质量,也在理论上限制了钠离子电池的能量密度.因此,开发先进的、利于钠离子脱嵌的电极材料是开发高性能钠离子电池的关键.本文在钠离子电池工作原理的基础上,着重介绍了几类典型的关键电极材料,并对它们的研究进展进行了简要综述.  相似文献   

2.
拉曼光谱是一种无损的分析技术,可以提供样品化学结构和分子相互作用的详细信息。由光谱学方法与常规电化学方法相结合产生的电化学原位光谱是一种动态探测电极材料结构和相组成的强大技术,能够方便地提供电极界面分子的微观结构信息,这使得其在储能领域中有广阔的应用前景。拉曼光谱能够有效地原位表征可充电铝离子电池氯化铝基电解液中络合离子、不同正极材料在充放电过程中的变化规律。结合X射线衍射技术(XRD)或X射线光电子能谱技术(XPS)等表征技术,拉曼光谱能够有效地揭示可充电铝离子电池的储能机理,包括对电池电解液和电极材料的研究以及电极表面反应的原位监测,对电池材料和界面结构性质的研究可以为电池材料和微观结构的优化设计提供指导,对电极表面反应的原位监测,有助于对电极界面反应的机理进行深入的研究,从而指导正极材料结构改进,促进可充电铝离子电池的发展。  相似文献   

3.
总结了近几年来锂硫电池正极材料的研究进展,简要阐释了锂硫电池正极材料的研究现状、存在的问题及其面临的挑战.通过碳材料的引入,导电聚合物的复合,金属氧化物的添加均不同程度地提高了硫电极材料的电导率,有效抑制了多硫化物的溶解,为体积膨胀提供了空间,从而改善了锂硫电池的活性物质利用率和循环稳定性.简化工艺,降低成本,提高硫的负载量,这将是下一阶段锂硫电池研究的重点.  相似文献   

4.
当今社会,电化学储能器件在人类的社会活动中变得越来越重要。电极材料作为电化学储能器件的核心部分,一直是人们研究的焦点。石墨炔是一种新型的二维平面结构的全碳材料,它宽的层间距、大的比表面积、独特的三维孔隙结构和好的导电性使其在能源存储器件电极材料应用中具有巨大的潜力。基于石墨炔温和的制备方法与独特的结构特征,本文详细介绍了近年来石墨炔在储能方面的理论分析和实验进展。通过研究锂/钠在单层、多层石墨炔上的迁移率和存储,理论分析石墨炔基电池具有很好的储锂储钠性能。实验方面,石墨炔作为电极材料在储钠储锂方面的容量与理论值相近。此外石墨炔作为电极材料成功应用于超级电容器和金属-硫电池,并表现出了优异的容量存储性能。石墨炔纳米形貌的调控、石墨炔的热处理,以及异原子的掺杂等均可以有效地提高石墨炔在这些储能器件中的性能。  相似文献   

5.
龚乐  杨蓉  刘瑞  陈利萍  燕映霖  冯祖飞 《化学进展》2019,31(7):1020-1030
石墨烯量子点(GQDs)作为新型碳基材料,由于其纳米级小尺寸而具有比表面积大、导电性高、透明性好、荧光性能独特等优点,是一种极具潜力的储能器件电极材料。GQDs与金属化合物、碳材料等形成具有三维空间结构的复合材料,有利于电子扩散和离子传输,大幅度改善GQDs作为电极材料的实际应用性能。异原子掺杂型GQDs可提供较多活性位点,提高活性物质利用率。本文介绍了GQDs的合成策略,主要分为自上而下和自下而上法。不同制备方法对GQDs的粒径大小、表面缺陷位点和荧光特性等的影响也不尽相同。通过阐述近几年GQDs、掺杂型GQDs及其复合物在超级电容器、锂离子电池、太阳能电池等能源器件方面的应用实例,表明具有量子限域效应和边界效应的GQDs基材料在新型储能器件中有巨大的应用潜力;通过深层剖析GQDs复合物的空间结构对储能器件电化学性能的影响,为今后深入研究奠定基础。此外,指出未来GQDs的发展方向是寻找快速、绿色环保的大批量合成方法,均匀、有效的掺杂或复合以及构建独特空间结构的电极材料,进一步提高其应用于储能器件时的电化学性能。  相似文献   

6.
商业化锂离子电池石墨负极和锂盐过渡金属氧化物正极材料的储锂容量都已接近各自的理论值,探索下一代高能量密度电极材料是解决现阶段锂离子电池容量限制的关键。近年来,新型金属草酸基负极材料,借助其在金属离子电池中多元化储能机制诱发的较高储能效应在碱金属离子电池绿色储能材料领域备受关注。本文就金属草酸基材料在锂、钠、钾金属离子电池方面的最新研究进行了综述,着重介绍了材料的晶型结构、多元化储能机制及储能过程中的动力学特征,简单阐述了材料在电化学储能中存在的问题,分析了金属草酸基负极材料在形貌晶型控制、界面碳复合改性和金属元素掺杂方面的改性策略。最后,预测了金属草酸基负极材料在碱金属离子电池体系的发展方向。  相似文献   

7.
近年来, 二维材料由于其独特的结构以及高电化学活性在储能领域中备受关注. 然而在实际应用中, 二维材料的“面-面”堆叠极大地限制了其性能的发挥. 凝胶化作为实现纳米材料液相三维组装的重要手段, 不仅可以有效减少二维材料的团聚, 保留更多活性位点, 同时形成的三维网络结构可以提供畅通的离子电子传输通道, 提升材料在储能应用中的实用性. 不仅如此, 二维材料的凝胶化在电极材料孔结构设计以及活性物质缓冲空间定制方面具有先天优势. 本文以氧化石墨烯凝胶化过程的方法和原理为基础, 综合评述了石墨烯及其它几类较典型的二维材料的凝胶化机制及方法, 梳理了其孔结构调控策略, 并对凝胶化二维储能材料的设计以及应用进行了归纳、 总结及展望.  相似文献   

8.
正近年来,二维纳米材料以其特殊层状结构与优良性能作为柔性储能器件电极材料,人们已进行了广泛探索研究,期望发现性能优异的柔性二维电极材料。黑磷作为一种p型直接带隙层状单元素半导体上世纪60年代已被发现~1,但对二维层状黑磷的广泛兴趣始于2014年其在场效应管中的成功应用~2,近两年相关研究激增。研究发现,二维黑磷维持  相似文献   

9.
润湿特性对超级电容器储能性能有着至关重要的影响。借助分子动力学模拟,本文研究了润湿特性对超级电容器储能动力学行为的影响。以石墨烯和晶体铜作为疏电解液和亲电解液电极材料。结果表明,在充电过程中,亲电解液铜电极呈现出非对称的U型微分电容曲线,负极电容是正极的~5.77倍,不同于经典双电层理论Gouy-Chapman-Stern(对称U型)和疏电解液型。该现象与离子自由能阻力分布密切相关,负极自由能阻力远小于正极(~2倍)和疏电解液电极,进而有利于强化双电层结构对电极电压的响应能力,导致更高微分电容。通过微分离子电荷密度,本文再现了微分电容演变规律,并发现改善润湿性会显著降低双电层厚度。最后,我们指出润湿性直接影响储能微观机理,将电荷储存机制从离子吸附和交换共同主导(疏电解液)转变到离子吸附主导(亲电解液)。本文所得结论揭示了润湿特性对储能动力学行为影响的原子层级机理,对超级电容器材料设计、构筑与润湿特性调控具有重要指导意义。  相似文献   

10.
液态金属电极电导率高,电极界面容易构建,在充放电过程中可有效避免电极结构形变、枝晶生长等问题,在储能电池领域具有重要应用价值. 本文主要讨论了液态金属电极在液态金属电池、钠硫电池和ZEBRA电池中的应用进展,重点介绍了液态金属电池关键材料体系、充放电机制及电池构型等,评述了液态金属电极储能应用中涉及的熔盐电解质、固态陶瓷隔膜、多场影响因素等方面的重要研究进展,分析了高温密封、腐蚀防护等关键问题,明确了液态金属电极在储能电池应用中的发展方向.  相似文献   

11.
储氢材料的研究进展   总被引:1,自引:0,他引:1  
日益严峻的能源危机和环境污染,使得发展清洁的可再生能源成为世界各国的重要课题。氢能源以其可再生性和良好的环保效应成为未来最具发展潜力的能源载体,氢能被公认为人类未来的理想能源,而氢的储存是发展氢能技术的难点之一。介绍了各类材料的储氢功能特点和近年来几类主要储氢材料的研究进展,并指出了储氢材料的发展方向。  相似文献   

12.
Climate change and the energy crisis have promoted the rapid development of electrochemical energy‐storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. To date, a wide variety of porous carbon materials based upon molecular design, pore control, and compositional tailoring have been proposed for energy‐storage applications. This focus review summarizes recent advances in the synthesis of various porous carbon materials from the view of energy storage, particularly in the past three years. Their applications in representative electrochemical energy‐storage devices, such as lithium‐ion batteries, supercapacitors, and lithium‐ion hybrid capacitors, are discussed in this review, with a look forward to offer some inspiration and guidelines for the exploitation of advanced carbon‐based energy‐storage materials.  相似文献   

13.
化石能源枯竭以及地球环境污染已经成为并且在未来相当长一段时期内都将是人类面临的最严峻的危机之一.因此,寻找清洁的替代能源形式、有效的能量存储方式以及高效的能源利用途径是目前科学研究的热点.自从其高质量样品被制备和研究以来,石墨烯一直吸引着全世界科研工作者的兴趣;它的一系列独特的物理化学性质,为其在能源领域的应用提供了无限前景.本文对石墨烯在能源领域的最新研究进展以及其工业化应用作了简要综述,具体内容包括石墨烯材料在以下领域的应用:能源储存器件类,如超级电容器和锂离子电池;能源转化装置类,如燃料电池和太阳能电池.  相似文献   

14.
All-organic composites are widely used in energy storage application due to the high breakdown strength performance, but the improvement of energy storage was limited by the relatively low dielectric constant. Therefore, to satisfy the high demands of dielectric materials, energy storage properties of polymer composites should be further enhanced. In this article, poly(vinylidene fluoride-co-chlorotrifluoroethylene) (P(VDF-CTFE)) and polyurea (PUA), which are known as high dielectric ferroelectric material and linearly high energy storage efficiency material respectively, are composited through double layer (DL) casting method for the first time. The properties of DL structured composite film is contrasted with solution blending structure especially in energy storage efficiency, and the results demonstrate that DL structure design can make great use of advantages of two materials and also can avoid the influence of phase separation between P(VDF-CTFE) and PUA efficiently. Moreover, high breakdown strength (6180 kV/cm) and high energy storage efficiency (77%) of DL composites can be realized simultaneously by incorporating PUA as an insulating layer, and the mechanism is discussed in detail. This work provides an effective route to improve the energy storage properties of polymer dielectric materials and shows great application potential.  相似文献   

15.
陈昆峰  薛冬峰 《应用化学》2018,35(9):1067-1075
阳离子氧化还原化学是电化学储能技术中最核心的储能机理,如何高效快速利用氧化还原活性阳离子是发展兼具高功率密度与高能量密度储电技术的关键。处于胶体状态的阳离子可形成热力学平衡态和非平衡态,具有高反应活性和低离子迁移势垒,展现出独特的电化学特性。本文着重介绍氧化还原活性阳离子的胶体状态与其在电化学储能上的应用,并从热力学和动力学方面阐述其储能机理,以及活性胶体离子电极和超级电容电池的构筑。利用胶体的高比表面积、高离子吸附能力和荷电离子梯度分布等特性,创造性地构筑胶体超级电容电池,解决了现有电化学储能电极材料体系中高容量与高功率不能兼具的问题,同时开拓了胶体体系新的应用方向。  相似文献   

16.
Given the global relevance of sustainable energy and energy security, the study of electrochemistry and the development of energy storage devices is a very active area of research. As researchers attempt to overcome issues with current energy storage devices, innovative methods are required to probe deeper into the working mechanisms of devices. The ability to study electrochemistry as it takes place in electrochemical energy storage devices has been enabled by continuous developments in instrumentation, improved accessibility for researchers and also innovations in data collection and cell design. In this short review, we highlight several studies that make use of innovations in data collection, data interpretation, or device design, to study electrochemical energy storage devices using scattering methods.  相似文献   

17.
An overview of the importance of and methods available for heat storage in the form of sensible and latent heat is followed by a discussion of the advantages and disadvantages of reversible thermochemical energy storage compared to conventional energy sources such as fuels, i.e. irreversible chemical energy carriers. Of the reversible metal-hydride–metal systems, the MgH2? Mg system is particularly attractive as a hydrogen and a high-temperature heat storage material because of its high hydrogen content and the high energy content of the Mg–H bond. The advances made in this area over the past few years, namely in catalytic hydrogenation and the doping of magnesium powders, have led to the development of “active MgH2? Mg systems” for energy storage. The first experimental results on high-temperature heat storage (also with cooling) by coupling a MgH2? Mg storage system with a low-temperature metal hydride storage system are presented.  相似文献   

18.
Electrochemical hydrogen storage in porous carbon materials is emerging as a cost-effective hydrogen storage and transport technology with competitive power and energy densities. The merits of electrochemical hydrogen storage using porous conductive carbon-based electrodes are reviewed. The employment of acidic electrolytes in such storage systems is compared with alkaline electrolytes. The recent innovations of a proton battery for smaller-scale electricity storage, and a proton flow reactor system for larger (grid)-scale storage and bulk export of hydrogen produced from renewable energy, are briefly described. It is argued that such systems, along with variants proposed by others, all of which rely on electrochemical hydrogen storage in porous carbons, can contribute to the search for energy storage technologies essential for the transition to a zero-emission global economy.  相似文献   

19.
Since the discovery of relaxor ferroelectric behavior was firstly reported in irradiated poly(vinylidene fluoridetrifluoroethylene) (P(VDF-TrFE)) copolymer, many strategies have been developed to enhance the electrical energy storage capability, including copolymerization, grafting, blending and fabricating of multilayer. This review article mainly summarizes the recent progresses on these strategies and aims to motivate the development of novel PVDF-based polymers for electrical energy storage and dielectric applications.  相似文献   

20.
Energy storage devices are one of the hot spots in recent years due to the environmental problems caused by the large consumption of unsustainable energy such as petroleum or coal. Capacitors are a common device for energy storage, especially electrical energy. A variety of types including electrolytic capacitors, mica capacitors, paper capacitors, ceramic capacitors, film capacitors, and non-polarized capacitors have been proposed. Their specific applications depend on their intrinsic properties. Dielectric capacitors have reasonable energy storage density, with current research focusing on the enhancement of energy density and making the materials more flexible as well as lightweight. Improvement strategies are based on the premise that use of two or more different materials (e.g. polymers and ceramics/metals) at an optimal formulation can result in properties that combine the advantages of the precursor materials. Different polymers especially fluoropolymers (e.g. PVDF and PVDF based co-polymer) are the main components in dielectric nanocomposites for capacitors with high energy storage performance. In this article, we have briefly summarized the recent advances in functional polymers nanocomposites for energy storage applications with a primary focus on polymers, surface engineering, functional groups and novel synthesis/manufacturing concepts applied to new materials. The article presents a unique integrated structure and approaches providing key knowledge for the design and development of novel, low-cost, multifunctional next-generation energy storage materials with improved efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号