首页 | 本学科首页   官方微博 | 高级检索  
    检索          
共有20条相似文献,以下是第1-20项 搜索用时 250 毫秒

1.  由1,1,2,3-四氯丙烯合成一些氟氯化合物  
   曾纪珺 马辉 韩升 唐晓博 郝志军 王博 张伟 吕剑&#  《化学通报》,2014年第77卷第4期
   以1,1,2,3-四氯丙烯(1)为原料,合成了多种具有工业价值的氟氯化合物。首先,以叔胺-2HF为氟化试剂,亲核取代1得到3-氟-1,1,2-三氯丙烯(2);随后在AlCl3催化下异构2得到3-氟-2,3,3-三氯丙烯(3),在FeCl3或KCl催化下异构3得到1-氟-1,2,3-三氯丙烯(4);最后在铬基氟化催化剂催化下,气相氟化2高转化地得到2-氯-3,3,3-三氟丙烯(5),在SbCl5催化下,液相氟化3一步得到2-氯-1,1,1,2-四氟丙烷(6)。本文所合成的化合物5和6均是合成新一代环保型制冷剂HFO-1234yf的重要中间体。    

2.  1-丁烯齐聚反应Ⅲ对-甲基苯磺酸镍及聚苯乙烯磺酸镍催化体系  被引次数:1
   高占先  李文忠  路百成  张爱丽  周科衍《分子催化》,1988年第2期
   本文考察了对-甲基苯磺酸镍/二氯乙基铝均相催化剂对1-丁烯齐聚反应的催化作用;考察了聚苯乙烯磺酸镍/二氯乙基铝固相化催化剂对1-丁烯齐聚反应的催化作用;通过对产物组成、原料丁烯异构体分析及所发现的反应产物中微量C_6烯烃,作者对均相催化剂和固相化催化剂进行了关联.    

3.  调变 MTO反应中双循环机理的比重:ZSM-5分子筛上不同接触时间的作用  
   张默之  徐舒涛  魏迎旭  李金哲  王金棒  张雯娜  高树树  刘中民《催化学报》,2016年第8期
   低碳烯烃(乙烯、丙烯和丁烯)是重要的有机化工原料,是现代石油化工的基础,主要通过石脑油裂解和烷烃脱氢制备。现阶段我国原油对外依存度已超过60%,“多煤、缺油、少气”的能源现状决定了以煤或天然气为原料经甲醇制取石化产品成为一种重要的替代途径。甲醇制取低碳烯烃(MTO)过程成为连接煤化工和石油化工的桥梁。 ZSM-5分子筛以其高效的甲醇转化能力、优异的低碳烯烃选择性和出色的抗积碳性能成为非常理想的 MTO反应催化剂。研究发现 ZSM-5分子筛催化 MTO反应过程中,乙烯的生成规律与其它 C3–C7链状烯烃不一致,认为乙烯主要来源于芳烃缩环/扩环循环,而 C3–C7链状烯烃主要来源于烯烃甲基化/裂解循环,两种循环同时存在。本文于300°C在 ZSM-5分子筛上进行 MTO反应,通过考察不同空速(WHSV)条件下的 MTO反应性能和分析催化剂内留存物种的生成和所起的作用,研究甲醇转化机理。气相流出物种和催化剂内留存物种的分析表明, ZSM-5分子筛催化 MTO反应时遵循双循环机理——以多甲基苯和多甲基环戊二烯为主要活性物种的芳烃循环机理和以链状烯烃为主要活性物种的烯烃循环机理。在双循环机理中,芳烃循环和烯烃循环并不是简单叠加,而是相互影响,芳烃循环产生的烯烃可以作为烯烃循环的活性物种促进烯烃循环,烯烃循环中较高级的烯烃经过环化、氢转移作用,能够转化成富氢的烷烃和贫氢的芳烃、环戊二烯物种,贫氢的芳烃和环戊二烯物种又可以作为芳烃循环的主要物种促进芳烃循环的进行。氢转移反应是联系烯烃循环和芳烃循环的重要过程,与反应过程中原料甲醇与催化剂床层的接触时间有关,12C/13C甲醇切换实验揭示了双循环机理与氢转移反应的相关性,通过调变原料甲醇与催化剂床层的接触时间,可以调变氢转移反应的剧烈程度,进而对催化剂上芳烃循环和烯烃循环的甲醇转化能力产生不同的影响。当空速较低时,进料甲醇与催化剂床层的接触时间较长,有利于产物烯烃的氢转移反应,加速了分子筛催化剂上芳烃物种和环戊二烯物种的生成和累积,促进了芳烃循环,主要由芳烃循环生成的乙烯和多甲基苯的气相选择性提高;反之,当空速较高时,进料甲醇与催化剂床层的接触时间减少,产物烯烃的氢转移反应受到抑制,氢转移反应的产物——芳烃和环戊二烯物种的生成数量和累积速率降低,芳烃循环活性不高,使得烯烃循环成为甲醇转化的主要途径, C3–C7烯烃显示出更高的活性,在气相流出物种中的选择性也更高。总之,原料甲醇与催化剂床层的接触时间能够显著影响催化剂内留存物种的生成和累积,进而改变两种循环的比重。这些发现对于实现 ZSM-5分子筛催化 MTO反应过程中的产物烯烃和芳烃的选择性调控具有重要意义。    

4.  甲醇羰基化制醋酸铱基催化剂的研究  被引次数:7
   郑修成  张守民  黄唯平  赵维君  吴世华《有机化学》,2003年第23卷第6期
   摘要 醋酸是一种重要的化工原料,甲醇羰基化是目前生产醋酸的主要方法, 铱基催化剂是最有发展前景的甲醇羰基化反应制备醋酸的催化剂。介绍了铱基催化 剂体系的催化机理、速度影响因素,并与铑基催化剂进行了比较.    

5.  非均相TiCl_4/MgCl_2型Ziegler-Natta催化剂催化烯烃配位聚合机理研究进展  
   牛庆涛  彭伟  贺爱华《中国科学:化学》,2019年第8期
   非均相TiCl_4/MgCl_2型Ziegler-Natta催化剂(负载型Ziegler-Natta催化剂)因其高聚合活性、高立构选择性及低制备成本,是目前聚烯烃领域重要的工业催化剂.本文综述了负载型Ziegler-Natta催化剂催化α-烯烃(乙烯、丙烯)和共轭二烯烃(丁二烯、异戊二烯)配位聚合机理的研究进展,包括TiCl_4在MgCl_2表面的吸附、钛的烷基化与还原、烷基铝的作用、活性中心数目、活性中心价态、活性中心模型、可能活性中心结构及催化机理、给电子体作用等.最后,展望了负载型Ziegler-Natta催化剂催化烯烃聚合的机遇与挑战.    

6.  二甲苯异构化催化剂的表面酸性及其催化活性  
   胡家芬  蔡健健  黄月芳  舒义静  李全芝《催化学报》,1985年第6卷第4期
   用流动TPD和TPR方法以及红外光谱研究了二甲苯异构化催化剂的酸性质及其表面反应,得到了NH_3在不同的二甲苯异构化催化剂上的程脱谱,并计算了它们的酸中心数及在两种不同强度的酸中心上NH_3的脱附活化能。还用红外光谱测定了具有不同催化活性的二甲苯异构化催化剂上表面酸的类型,并研究了不同的二甲苯异构化催化剂上的表面反应,得到了催化活性、选择性与酸性质相关联的信息。    

7.  5-氟胞嘧啶互变异构的密度泛函理论计算  被引次数:4
   李宝宗《化学学报》,2006年第64卷第13期
   采用BH-HLYP/6-311+G**方法对10种气相和水相中可能存在的5-氟胞嘧啶互变异构体进行了几何全优化, 并计算出它们的总能量和吉布斯自由能. Onsager反应场溶剂模型用于水相的计算. 计算结果表明, 5-氟胞嘧啶在气相中主要以烯醇式-氨基式形式存在, 在水相中主要以酮式-氨基式形式存在. 溶剂化自由能与异构体的气相偶极矩存在相关性.进一步求得互变异构化以及构象异构化和顺反异构化的过渡态, 探讨异构化过程中的几何结构和能量的变化.    

8.  加氢催化剂氟化后表面B酸和L酸酸性位的红外光谱分析  
   吕士杰 傅宏祥《分子催化》,1993年第7卷第6期
   润滑油加氢精制催化剂的表面B酸是加氢脱氮的活性位,表面L酸是加氢裂解的活性位.尽管如此,人们利用红外光谱分析在加氢催化剂硫化后的表面上从未检测到B酸中心.事实上,所有固体催化剂参加的有机反应中,人们已经证实表面酸性位起了重要作用.并且在许多催化过程中,固体催化剂的酸性可以通过加氟来改变.现有两种加氟方法:(1)浸渍法或混浆法,即在催化剂制备过程中,选择合适的氟化物,浸渍到载体上,或与载体组成物混合烧结.(2)原位氟化法,即在催化过程中或在催化过程之前,加一种合适的氟化物于气体流或液体流中,使气体流或液体流通过催化剂加氟.我们首次在国内利用原位氟化技术对润滑油加氢催化剂加氟,即在催化过程中,加入了一种氟化物于润滑油中,在润滑油与催化剂发生作用时,给催化剂补氟,以使因氟流失而活性降低的催化剂恢复活性.    

9.  烷烃加氢异构化反应  被引次数:2
   梁君  王福平《化学进展》,2008年第20卷第4期
   综述了烷烃加氢异构化反应中的正碳离子异构和裂化机理、孔口与钥匙锁催化、择形催化及双分子机理,详细论述了分子筛基双功能催化剂酸性、金属、金属酸位比、孔道、晶粒尺寸和催化剂改性对烷烃加氢异构反应活性、异构选择性等的影响。论述了近期烷烃加氢异构催化剂改性的新方法。提出针对不同催化剂体系,根据反应机理提高异构催化剂活性和选择性的途径。    

10.  反-4-(反-4'-正丙基环已基)环已醇的合成与表征  
   杨永忠  刘鸿  高仁孝  刘骞峰  李启贵《化学研究与应用》,2005年第17卷第2期
   环己烷类液晶因具有高度的稳定性,较宽的相列相温区而受到人们的青睐。反-4-(反-4’-正丙基环己基)环己醇(trans-3HHE)是一种合成环己烷类液晶的重要中间体,它可通过酶选择性催化和顺式构型异构化二种方法合成。文献报道顺式构型异构化法是:4-(反-4’-正丙基环己基)苯酚以铑/碳或铑/氧化铝为催化剂,在酸性介质条件下进行加氢反应,    

11.  二氧化碳和甲醇直接合成碳酸二甲酯的研究进展  被引次数:7
   周奇志《化学通报》,2009年第72卷第3期
   碳酸二甲酯是一种重要的绿色化工原料,二氧化碳和甲醇直接合成碳酸二甲酯是一种绿色合成方法.本文介绍了近年来此方法的催化剂及其催化机理研究的进展,讨论了不同催化体系设计的理论基础和催化剂的作用机理,并对助催化剂和吸水剂以及反应条件对催化剂活性和选择性的影响进行了评述.    

12.  5-氟尿嘧啶和5-氯尿嘧啶及其互变异构体的理论计算研究  被引次数:8
   李宝宗《化学学报》,2005年第63卷第16期
   采用HF/3-21G方法, 对6种气相和水相中可能存在的5-氟尿嘧啶(和5-氯尿嘧啶)互变异构体进行了构象分析.采用B3LYP/6-311+G**方法对处于优势构象时的各互变异构体进行了几何全优化, 并计算出它们的总能量、焓、熵、吉布斯自由能. Onsager反应场溶剂模型用于水相的计算. 计算结果表明, 5-氟尿嘧啶和5-氯尿嘧啶在气相中和水相中主要以双酮形式存在. 5-氟尿嘧啶和5-氯尿嘧啶的熵效应小, 对互变异构平衡没有显著的影响, 而焓变对互变异构产生了主要的影响. 讨论了水溶剂化作用对异构体的能量、电荷分布和偶极矩的影响. 溶剂化自由能与异构体的气相偶极矩存在相关性. 另外, 详细地将5-氟尿嘧啶和5-氯尿嘧啶与尿嘧啶进行了对比, 获得三者最稳定异构体间电子结构异同的有用信息.    

13.  氯代苯甲酸异构体的毛细管气相色谱分析  
   刘恒  周在德  裴英  秦圣英《化学研究与应用》,2003年第15卷第3期
   氯代苯甲酸是一种重要的精细化工产品,用途广泛,如用于合成临床治疗精神抑郁症的吗氯贝胺[1]及有机颜料中间体N (3 氨基 4 氯代苯甲酰基) 2 甲基 3 氯代苯胺[2]。但是氯代苯甲酸各异构体的性质差异极大,用途也不尽相同[3,4]。工业产品或多或少都会含有位置异构体,因此测定[5 7]氯代苯甲酸中各异构体含量就显得相当重要。已有报道的分析方法,或对仪器性能要求高,或操作繁琐,或分离效果不甚理想,因而在实际应用中受到一定的限制。考虑到氯代苯甲酸具有强极性、低挥发性等特点,本文采用甲酯化衍生物法对氯代苯甲酸异构体进行了气相色谱分…    

14.  催化噻吩类硫化物与烯烃烷基化硫转移反应的固体酸催化剂的失活机理  被引次数:3
   罗国华  徐新  单希林  佟泽民  彭少逸《催化学报》,2004年第25卷第8期
    催化裂化(FCC)汽油中的硫化物多以噻吩类硫化物的形式存在,而且相对集中在沸程较高的馏分中. 通过固体酸催化剂催化噻吩类硫化物与烯烃的烷基化反应生成多烷基噻吩,可较大程度地提高其沸点,再经精馏将硫化物转移至FCC汽油的重馏分中,从而达到脱硫目的. 考察了AlCl3-CT175树脂催化剂催化模型硫化物如噻吩、2-甲基噻吩及2-乙基噻吩与异丁烯的烷基化反应性能,采用GC-FPD和GC-MS技术研究了AlCl3-CT175树脂催化剂的失活机理. 结果表明,原料中的二烯烃杂质在固体酸催化剂作用下发生聚合反应结焦,覆盖在催化剂表面,堵塞孔道,从而导致催化剂失活.    

15.  硫酸化氧化锆固体超强酸  被引次数:1
   张六一  韩彩芸  杜东泉  张严严  许思维  罗永明《化学进展》,2011年第5期
   硫酸化氧化锆(SZ)是一种固体超强酸催化剂,它能高效催化异构化、烷化、酰化、环化、裂解、酯化和酯交换等多种类型的催化反应。1979年,日本科学家Hino和Arata发现SZ能在室温催化丁烷异构化反应,首次提出了SZ是一种酸性比100%浓硫酸还强一万倍的固体超强酸,从而引起了科学家们对SZ研究的浓厚兴趣。经过了三十多年发展,研究者们在SZ的合成、改性、表征和应用等方面取得了许多新的研究成果。本文综述了SZ几十年来的研究进展,内容主要包括SZ的合成方法,表面结构和酸性机理,研究者们对SZ性质的不同看法,SZ的改性及应用。    

16.  烷烃脱氢制烯烃用碳催化剂的微结构和表面化学调控研究进展  
   赵忠奎  葛桂芳  李伟作  郭新闻  王桂茹《催化学报》,2016年第5期
   烯烃是重要的大宗有机化工原料,广泛用于塑料、树脂、橡胶等高分子材料和基础有机化工产品和中间体的生产。同时,烯烃也是重要的精细化工原料和中间体,广泛用于染料、医药、香料、农用化学品、水性油墨和感光树脂等精细化工领域。长链烯烃通常是由小分子烯烃聚合制得,而小分子烯烃和苯乙烯的合成在学术界和工业界备受关注。在脱氢、裂解、脱水等诸多合成方法中,烷烃脱氢制烯烃是直接而中的路线,包括直接脱氢和氧化脱氢。小分子烷烃和乙苯催化脱氢制备对应的烯烃,尤其是乙苯制苯乙烯,目前工业上主要采用铁基催化剂催化直接脱氢工艺。积炭失活是该工艺面临的严峻挑战。工业上采用引入大量过热水蒸气的方法来解决这一难题,同时,还可以为脱氢反应提供热量。但是,这势必造成巨大的能耗和反应器容积效率的显著降低。氧化脱氢工艺是放热反应,并可有效抑制积炭,但又存在过氧化所致的低选择性的问题。直接脱氢和氧化脱氢各有利弊。目前,科学家和工业界都在扬长避短,开展两种脱氢工艺的新结构高性能催化剂的研究,并取得了长足进展。
  碳催化是近年来发展起来的一类重要的无机非金属固相催化剂,在光催化、电催化,以及热催化领域得到了广泛关注,同时也是材料领域研究的前沿和热点。碳材料,尤其是纳米碳,在诸多反应中展示出了比常规金属催化剂更好的催化性能,且具有可持续的特征。因此,碳催化具有广阔的发展空间和巨大的应用前景。众所周知,固体催化剂的催化性能重要依赖于催化剂表面催化活性位的性质及其可及性。元素组成、化学状态及缺陷边角特征决定着活性位的性质,而形貌、尺寸、形状、纹理、表面结构等催化剂的微结构特征决定着固相催化剂活性位的可及性。因此,探索有效的方法和策略,来调节固相催化剂的微结构和表面化学性质,已成为催化学术研究的热点领域。碳材料的表界面和边角的官能团和结构缺陷是催化反应的活性位。对于烷烃脱氢反应,碳材料的表界面羰基和结构缺陷是催化剂的活性位,而杂原子掺杂可以调控活性位的电子结构。
  本文综述了烷烃脱氢用碳催化剂微结构和表面化学调控方法和效果的最新研究进展,并讨论了烷烃脱氢碳催化材料的微结构和表面化学性质调控的重要性和严峻挑战。通过碳材料合成中前驱体的优选、合成方法和策略的创新,以及通过后处理的方法,均可有效调控碳催化剂的微结构和表面化学性质,从而调控其烷烃脱氢催化性能。碳催化用于烷烃脱氢反应制烯烃,尤其是直接脱氢,前景看好。目前,研究的碳催化剂多为粉末状,用于固定床,存在流体阻力大、压力降高、操作困难的问题,并有可能阻塞床层,造成安全隐患;用于流化床,粉末碳易于团聚,催化剂过滤分离困难,流失严重。纳米碳基整体式催化剂可以是碳催化的未来发展方向。但是,目前才刚刚起步。碳基整体式催化剂活性单元本身可及活性位的性质及活性单元的分散性、抗脱落性和整体式催化剂的机械强度、导热性等诸多问题需要深入研究和探讨。
  总之,碳催化烷烃脱氢,尤其是无氧化剂、无水蒸气条件下的直接脱氢,是经济、节能、清洁、高效的烯烃生产方法,具有广阔的发展空间和美好前景。微结构和化学性质的调变是调控固相催化剂催化活性位性质和可接近性的重要方法,碳催化材料及整体式催化剂的碳基活性单元微结构和化学性质的调控是实现其催化性能调控的有效策略。
   

17.  均相烯烃氢甲酰化铑催化剂的最新研究进展  被引次数:1
   夏娅娜  李峰  吴彪《分子催化》,2007年第21卷第5期
   烯烃氢甲酰化反应(Hydroformylation),又称OXO合成,是指烯烃与合成气(CO和H2)在催化剂的作用下生成多一个碳原子的正构醛(n-alde-烯烃氢甲酰化反应最早是Roelen[1](1897~1993)于1938年在德国鲁尔化学公司从事费托合成中发现的.目前,该反应以每年800~900万吨的产量成为当今世界最重要的有机化工工艺[2],其产品遍及各种不同碳数的醛和醇,其中最主要的除由丙烯出发合成丁、辛醇外,还有以高碳烯烃为原料的C8-11增塑剂醇和C12-18的表面活性剂醇,被广泛用于增塑剂、织物添加剂、表面活性剂、药物中间体、溶剂和香料等精细化工领域[3,4].均相氢…    

18.  Cr改性USY分子筛提高裂化催化剂的异构化性能  被引次数:7
   沈志虹  师为  李红杰《燃料化学学报》,2005年第33卷第3期
   在催化裂化过程中,烷烃分子在酸性催化剂表面进行一系列的反应,其中氢转移反应能导致汽油中的烯烃质量分数降低,而异构化、环化、芳构化反应则改善裂化产品的分布,对提高裂化汽油的辛烷值有明显的效果。为了解决我国裂化汽油中烯烃质量分数过高的问题,目前大多数催化裂化装置都采用了降烯烃裂化催化剂,以氢转移反应活性高的REUSY分子筛作为裂化催化剂的活性组分。但由于REUSY分子筛的异构化活性较低,因此裂化汽油的辛烷值有所下降,需要对裂化汽油进行加氢异构化处理。若直接对裂化催化剂进行改性,提高其异构化反应活性,    

19.  芳香烃异构体的毛细管柱气相色谱-傅里叶变换红外光谱联用技术分析  
   钟山  冯子刚《分析测试学报》,1995年第4期
   采用国产色谱仪与进口红外光谱仪及接口组成的气相色谱-傅里叶变换红外光谱(GC/FTIR)分析仪,使用大口径毛细管柱,分析了乙苯与苯乙烯固相催化反应液的复杂芳香烃异构体组成,讨论了GC/FTIR分析中随机噪声和基线漂移的去除方法。采用等高线图(CTD)分析技术得到了混合液中各组分的纯气相红外光谱图,最后鉴定了14个气相色谱峰中的9个,占整个色谱峰面积99%以上。    

20.  离子液体催化邻二甲苯氯甲基化反应  被引次数:1
   邓运泉  方岩雄  任清刚  张金玲  徐学涛《应用化学》,2008年第25卷第10期
   制备了8种不同链长的溴化烷基咪唑盐和4种丁基类甲基咪唑六氟磷酸盐、四氟硼酸盐、全氟丁基磺酸盐及氯化盐离子液体,研究了咪唑盐类离子液体催化邻二甲苯、氯化氢、多聚甲醛为起始原料的氯甲基化反应. 考察了离子液体类型、催化剂用量、反应温度及反应时间对反应的影响. 反应产物采用气相色谱法进行定量分析;采用GC-MS测试技术进行了定性分析. 结果表明,[C12mim]Br(溴化1-十二烷基-3-甲基咪唑盐)是最适合的催化剂. 其最佳反应条件是:离子液体摩尔分数为4%(与邻二甲苯的摩尔比),温度70 ℃,反应时间10 h,产物收率可达89.8%,TON数达到22.4.    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号