首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
以四氧化三钴Co_3O_4纳米棒为研究对象,我们利用液体环境透射电子显微镜,原位观察了四氧化三钴纳米棒在水中的自组装过程。研究发现在电子束辐照的水环境下,四氧化三钴纳米棒的晶面存在互补式自组装现象。随着纳米棒之间的距离越来越近,纳米棒之间的相对运动速率逐渐增加,纳米棒之间的相互作用力逐渐增加。通过进一步分析纳米棒的形貌发现,纳米棒的暴露晶面大多数为{100}、{110}以及{111}晶面,而Co_3O_4属于极性氧化物,这些晶面往往会带有一定的电荷。在液体环境下,正是由于这些易暴露面都带有不同大小的电荷,在晶面电荷的驱动下,电荷属性相反的四氧化三钴纳米棒会互相吸引,形貌结构上进行互补,实现快速驱动的纳米棒之间自组装。  相似文献   

2.
草酸钴纳米棒的一步固相化学合成及其表征   总被引:9,自引:2,他引:7  
在非离子表面活性剂聚乙二醇(PEG)存在的条件下, 利用不同的钴盐分别与草酸进行低热固相化学反应, 一步合成了一系列金属配合物草酸钴纳米棒, 并采用XRD, TEM, SEM等分析手段对其结构和形貌进行了表征. 实验结果表明: 在合适的表面活性剂存在下, 利用钴盐与草酸的固相反应一步即可得到一维草酸钴纳米棒, 钴盐的不同及表面活性剂聚合度的不同均会影响纳米棒的形貌. 表面活性剂PEG在草酸钴纳米棒的形成过程中起到类似软模板的作用, 并诱导产物纳米晶沿某一方向定向生长从而生成纳米棒.  相似文献   

3.
采用温和的水热-热解法, 在一定温度下, 通过调节Na2CO3溶液和可溶性钴盐的摩尔比控制产物的形貌, 得到具有一维结构的水热产物. 以该产物为前驱体制备了具有一维结构的Co3O4多晶. 以六次甲基四胺、尿素等代替Na2CO3溶液作为沉淀剂, 均得到了一维纳米结构的Co3O4, 表明CO2-3在水镁石CoO2层间的嵌入是得到一维结构水热产物的关键.  相似文献   

4.
采用尿素作为氮源,通过热退火法制备氮掺杂还原氧化石墨烯,然后以乙酰丙酮钴作为钴源通过水热法制备氮掺杂还原氧化石墨烯/四氧化三钴杂化纳米片作为催化氧还原和氧析出反应的双功能催化剂。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线电子能谱仪(XPS)等对其进行形貌结构表征,通过旋转圆盘电极等电化学测试对其电催化性能进行分析,可以看出该催化剂具有良好的氧还原和氧析出催化性能。  相似文献   

5.
四氧化三铁(Fe3O4)的水溶液分散性是影响其在生物医学中使用效果的关键因素。以FeSO4和乙二醇为原料,通过柠檬酸根离子改性,采用水热法合成了水溶液分散性良好的Fe3O4粒子。采用X-射线衍射(XRD)、扫描电镜(SEM)和红外光谱(FT-IR)分析等测试手段对制备的Fe3O4的物相、形貌、尺寸、表面吸附官能团进行了表征。研究了柠檬酸盐对样品形貌、尺寸、结晶性和水溶液分散性的影响。与未改性的Fe3O4相比,柠檬酸盐改性后的Fe3O4粒子表现出优异的水溶液分散性。  相似文献   

6.
研究了利用乙二醇共浸渍方法制备高分散的二氧化硅负载钴催化剂,该催化剂有效地提高了乳酸乙酯的气相加氢反应活性。系统地考察了钴金属负载量、乙二醇与硝酸钴摩尔比、醇种类和焙烧温度等制备参数对四氧化三钴纳米粒子物性的影响。乙二醇与硝酸钴摩尔比和醇种类对二氧化硅负载的四氧化三钴纳米粒子大小有显著影响。与常规的浸渍方法相比较,共浸渍过程中的乙二醇增强了二价钴粒子和载体二氧化硅之间的相互作用力,从而引起金属钴分散度的提高以及四氧化三钴纳米粒子粒径从16 nm降到5 nm以下;金属钴的高分散与无定型硅酸钴的形成密切相关;同时显著地提高了乳酸乙酯的加氢活性,在反应条件下(2.5MPa、160°C和10%(w,质量分数)Co/SiO_2)乳酸乙酯的转化率从69.5%提高到98.6%,1,2-丙二醇的选择性达到98.0%。利用X射线衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、N_2吸脱附实验、H_2程序升温还原(H_2-TPR)等表征手段对共浸渍制备的Co/SiO_2催化剂结构和形貌进行了表征分析。  相似文献   

7.
《化学研究与应用》2001,13(6):629-631
采用循环伏安以及电化学和电子吸收光谱联用技术研究了邻硝基四苯基四苯并卟啉(H2TP(o-NO2)TBP)及其锌和钴配合物在DMF介质中的氧化和还原性质.结果表明 H2TP(o-NO2)TBP及其锌配合物的氧化和还原均发生于卟啉的大环π电子结构,伴随有紫外-可见光谱的明显变化,氧化和还原过程均为可逆.钴配合物的第一氧化和还原均发生于中心金属离子,第二氧化发生于卟啉的大环π电子结构.  相似文献   

8.
在乙醇和三乙胺的混合溶液中,采用溶剂热法制备了尺寸为10 nm的Co3O4立方体.考察了钴盐前驱体和溶解氧对Co3O4纳米立方体结构的影响规律,通过对合成过程中不同阶段产物的结构分析和表征,提出了Co3O4纳米立方体的形成机制是溶解再结晶的过程.将所制备的Co3O4纳米立方体在200°C焙烧处理后,尺寸和形貌均可保持稳定,但400°C焙烧后,变为球形纳米粒子.这种主要暴露{100}晶面的Co3O4纳米立方体催化CO氧化反应的活性低于纳米粒子({111}晶面),验证了四氧化三钴纳米材料在CO氧化反应中的晶面效应.  相似文献   

9.
采用两步水热法和高温退火法成功制备了三维氧化镍/钼酸钴(NiO/CoMoO_4)复合电极材料。利用XRD、扫描电镜、透射电镜和电化学方法分别对其结构、表面形貌和电化学性能进行了表征和研究。结果表明,NiO/CoMoO_4呈独特的纳米线/片状结构而不同于NiO的针状形貌,其结构为活性物质提供了更大的活性位点。在电流密度为0. 3A/g时,复合物的比电容高达2253F/g,远远高于同电流密度下纯NiO电极材料的比电容,循环2000圈后,电容的保持率为92%,NiO和CoMoO_4的协同效应增强了其超级电容特性。  相似文献   

10.
卢亚骏  王浩然  顾煜  徐岚  孙晓骏  邓意达 《化学学报》2012,70(16):1731-1736
设计实验研究了以无机镍盐和NaOH为原料,利用水热法制备Ni(OH)2纳米线,OH-和SO24-对于产物形貌的影响,并利用X射线衍射(XRD),傅立叶变换红外光谱(FTIR),透射电镜(TEM)等对材料结构、形貌和成分进行了表征,研究了Ni(OH)2纳米线形成的相关机理.结果表明,低的OH-浓度与高纯的SO24-水热环境是α-Ni(OH)2纳米线形成的关键因素.SO24-能够加速α-Ni(OH)2晶体沿[001]方向的生长,而OH-含量较低时,较低的库伦斥力不足以阻碍晶体沿[001]方向生长过程的进行.  相似文献   

11.
The nanocomposites based on cobalt oxide and nitrogen-doped carbon nanofibers (N-CNFs) with cobalt oxide contents of 10–90 wt% were examined as catalysts in the CO oxidation and supercapacity electrodes. Depending on Со3О4 content, such nanocomposites have different morphologies of cobalt oxide nanoparticles, distributions over the bulk, and ratios of Со3+/Co2+ cations. The 90%Со3О4-N-CNFs nanocomposite showed the best activity because of the increased concentration of defects in N-CNFs. The capacitance of electrodes containing 10%Со3О4-N-CNFs was 95 F/g, which is 1.7 times higher than electrodes made from N-CNFs.  相似文献   

12.
The effects of doping cobalt oxides with different amounts of ZrO2 and ThO2 (1.5–9 mol%) on the thermal stability of Co3O4 and the re-oxidation of CoO by O2 to Co3O4 were investigated. The techniques employed were DTA, with a controlled rate of heating and cooling, X-ray diffraction, and IR spectrometry.The results obtained by DTA revealed that the addition of both Th4+ and Zr4+ (up to 6 mol%) exerted no appreciable effect on the thermal stability of Co3O4. Increasing the amount of the dopant ions to 9% resulted in no further change in the thermal stability of Co3O4 in the case of Th4+, and an increase of 16% in case of Zr4+-doping. However, ThO2-doping of cobalt oxide was accompanied by an enhancement in the reactivity of CoO towards re-oxidation by O2 to Co3O4 to an extent proportional to the amount of dopant oxide.The X-ray investigation of ZrO2-doped cobalt oxides calcined in air at 1000°C revealed the presence of highly crystalline and stable zirconia in the cubic form. Such a stable phase could not be obtained at temperatures below 2370°C in the absence of stabilizing agents.X-ray and IR investigations of different solids showed the presence of free thoria and zirconia together with new thorium—cobalt and zirconium—cobalt compounds. However, the slow cooling of Zr-treated cobalt oxides from 1000°C to room temperature led to the decomposition of the newly formed compound. The d-spacings and absorption bands of the newly formed compounds were determined.  相似文献   

13.
A series of NixCo1-xCo2O4(0 ≤ x ≤ 1) spinel catalysts were prepared by the co-precipitation method and used for direct N2O decomposition. The decomposition pathway of the parent precipitates was characterized by thermal analysis. The catalysts were calcined at 500 °C for 3 h and characterized by powder X-ray diffraction, Fourier transform infrared, and N2 adsorption-desorption. Nickel cobaltite spinel was formed in the solid state reaction between NiO and Co3O4. The N2O decomposition measurement revealed significant increase in the activity of Co3O4 spinel oxide catalyst with the partial replacement of Co2+ by Ni2+. The activity of this series of catalysts was controlled by the degree of Co2+ substitution by Ni2+, spinel crystallite size, catalyst surface area, presence of residual K+, and calcination temperature.  相似文献   

14.
A new complex oxide with the cation ratio Ca:Co: Ga=2:0.8:1.2 has been synthesized in air at 1150oC. The cobalt atoms adopt oxidation states 2+ and 3+ in equal amounts giving an oxygen content corresponding to the composition Ca2Co0.8Ga1.2O4.8. It crystallizes in F-centered cubic structure with a=15.0558 Å. Conductivity measurements performed at high temperatures revealed that the temperature increase gives a charge disproportionation of Co3+ species resulting in a small concentration of Co4+ species and thus a small p-type conductivity in the oxide. A decrease of the oxygen pressure promotes oxygen depletion from the oxide and a deterioration of the conductivity. The electric properties are interpreted within a small polaron conduction mechanism. An unusually large mobility activation energy of 0.45 eV can be explained by a large spatial separation of cobalt cations in the structure.  相似文献   

15.
Isothermal gravimetry and magnetic susceptibility of MoO3, MoAl2O3, CoAl2O3 and CoMoAl2O3 with/without Na+ ions have been studied in order to investigate the reducibility of the systems in H2 H2—hydrocarbons and H2—hydro-carbon—thiophene. These studies have evidenced the formation of metallic cobalt during reduction of cobalt—moly catalysts containing Na+ ions in the Al2O3 support. This metallic cobalt accelerates the reduction of supported MoO3. However, in the absence of sodium, cobalt exerts an inhibitory influence on the reduction of MoAl2O3. The inhibition is caused mainly due to retention of the water evolved during the process by well-dispersed Co2+ ions which are incapable of undergoing reduction. The presence of sulfur also kelps in suppressing the reduction to cobalt metal.  相似文献   

16.
The characterization of La(Co,Cu)O3 perovskites has been performed by several techniques including XRD, BET, H2-TPR, O2-TPO, TPRS, and the solids tested as catalysts for the hydrogenation of CO. The reducibility of the perovskites is strongly affected by the preparation route, calcination temperature, catalyst morphology, and the amount of remnant alkali. Compared with the citrate-derived perovskite, LaCoO3 sample prepared by mechano-synthesis has various distinct Co3+ ions in perovskite lattice, which are reduced at different temperatures. Under typical conditions, the reduction of cobalt ions occurs in two consecutive steps: Co3+/Co2+ and Co2+/Co0, while the intra-lattice copper ions are directly reduced from Cu2+ to Cu0. The reducibility of cobalt ions is promoted by the presence of metallic copper, which is formed at a lower reduction temperature. The re-oxidation of the reduced lanthanum cobaltite perovskite could regenerate the original structure, whereas that of the reduced Co-Cu-based samples is less reversible under the same experimental conditions.The cobalt atom in the reduced perovskites plays an important role in the dissociation of CO, but the presence of a neighboring copper along with remnant sodium ions on the catalyst surface has remarkably affected the reactivity of cobalt for CO hydrogenation. The addition of copper into the perovskite framework leads to a change in the product distribution of CO hydrogenation and a decrease in reaction temperature. An increased copper content leads to a substantial decline in the rate of methanation and an increase in the formation of higher alcohols. A close proximity between cobalt and copper sites on the Na+-modified catalyst surface of the reduced nanocrystalline Co-Cu-based perovskites plays a crucial role in the synthesis of higher alcohols from syngas.  相似文献   

17.
以有机碱四甲基氢氧化铵(TMAH)为沉淀剂合成了纳米Fe3O4和Co2+掺杂的纳米Fe3O4粒子。分别讨论了碱用量,铁盐溶液浓度,反应温度,有机碱及PEG-4000的分散性等因素对纳米Fe3O4的形貌影响。结果表明,所合成的纳米Fe3O4为30nm左右的反尖晶石型面心立方结构,有机碱除了起沉淀剂作用,还能够提高纳米Fe3O4的分散性。本文还讨论了不同Co2+掺入量的纳米Fe3O4粒子的磁性质,结果表明Co2+掺杂的纳米Fe3O4粒子的矫顽力在不同掺入量的下有较大的改变。当Co2+掺入量为10.0%时,纳米Fe3O4的矫顽力达到最大值,为1628Oe。  相似文献   

18.
Nickel‐cobalt oxide nano‐flakes materials are successfully synthesized by a facile chemical co‐precipitation method followed by a simple calcination process. The studies show that the as‐prepared nickel‐cobalt oxides with different Ni/Co ratio are composed of NiO and Co3O4 compounds. The Co0.56Ni0.44 oxide material, which exhibits a mesoporous structure with a narrow distribution of pore size from 2 to 7 nm, possesses markedly enhanced charge‐discharge properties at high current density compared with the pure NiO and pure Co3O4. The Co0.56Ni0.44 oxide electrode shows a specific capacitance value of 1227 F/g at 5 mA/cm2, which is nearly three times greater than that of the pure NiO electrode at the same current density.  相似文献   

19.
The influence of lithium oxide-doping on the thermal stability of Co3O4 was studied using DTA, TG, DTG and X-ray diffraction techniques. Pure and doped cobaltic oxide specimens were prepared by thermal decomposition of pure basic cobalt carbonate and the basic carbonate mixed with different proportions of LiOH, in air, at different temperatures between 500 and 1100°C.Pure Co3O4 was found to start partial decomposition when heated in air at 830°C yielding the CoO phase. The complete decomposition was effected by heating at 1000°C.Doping of Co3O4 with different proportions of Li2O was found to much increase its thermal stability. The temperatures at which the doped oxide samples started to undergo decomposition were increased to 865, 910 and 1050°C for 0.375, 0.75 and 3% Li2O-doped solids, respectively. The DTA revealed that the 1.5% Li2O-doped cobaltic oxide did not undergo any thermal decomposition till 1080°C. The X-ray investigation showed that the prolonged heating of 1.5 and 3% Li2O-doped solids at 1100°C for 36 h effected only a partial decomposition of Co3O4 into CoO. Heating of these solids at temperatures varying between 900 and 1100°C led also to the formation of a new lithium oxide cobaltic oxide phase, the composition of which has not yet been identified.The role of Li2O in increasing the thermal stability of Co3O4 was attributed to the substitution of some of its cobalt ions by Li+ ions, according to Verwey and De Boer's mechanism, leading to the transformation of some of the Co2+ into Co3+ ions thus increasing the oxidation state of the cobaltic oxide lattice.  相似文献   

20.
Three new sodium cobalt (nickel) selenite compounds, namely, Na2Co2(SeO3)3, Na2Co1.67Ni0.33(SeO3)3, and Na2Ni2(SeO3)3 have been hydro-/solvothermally synthesized in the mixed solvents of acetonitrile and water. Single-crystal X-ray diffraction analyses reveal that these isostructural compounds belong to the orthorhombic Cmcm space group and their structures feature three-dimensional open frameworks constructed by the two-dimensional layers of [MSeO3] pillared by the [SeO3]2− groups. The two different types of Na+ ions reside in the intersecting two-dimensional channels parallel to the a- and c-axes, respectively. Their thermal properties have been investigated via TGA-DSC. The magnetic measurements indicate the existence of the antiferromagnetic interactions in these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号