首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A modified QuEChERS method (Quick, Easy, Cheap, Effective, Rugged, and Safe) for the determination of fifteen phenolic compounds in mustard greens (Brassica juncea) using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) analysis was developed. The QuEChERS partitioning step and dispersive solid phase extraction (d-SPE) clean-up sorbents were investigated, aimed at phenolic compound extraction and pigment removal, respectively. QuEChERS acetate version combined with 25 mg of diatomaceous earth (DE) and 5.0 mg of graphitized carbon black (GCB) provided the best conditions for sample preparation of the target compounds. Under the optimized conditions, all phenolic compounds showed good linearity (r ≥ 0.99) over the concentration range of 0.1 to 8000 μg kg−1, and the quantification limits were in the range of 0.06–230 μg kg−1. The spectrophotometric analysis showed that the clean-up step promoted a significant removal of chlorophyll, which is the major pigment present in the sample. Furthermore, antioxidant activity analysis was also carried out after the clean-up step and, together with chromatographic data, showed that no significant retention of the phenolic compounds occurs in the clean-up step. Two mustard greens varieties – Southern Giant Curled (SGC) and Florida Broadleaf (FB) - were analyzed with the proposed method. Seven phenolic compounds (4-hydroxybenzoic, p-coumaric, ferulic and sinapic acids, naringenin, apigenin and kaempferol) were found in both varieties, the greatest abundance being for sinapic acid (1261.5 ± 23 μg kg−1 in SGC and 1235.5 ± 26 μg kg−1 in FB) and ferulic acid (2861 ± 24 μg kg−1 in SGC and 3204.5 ± 45 μg kg−1 in FB).  相似文献   

2.
Chilean Laureliopsis philippiana has been used in traditional medicine by the Mapuche and their ancestors. To evaluate its pharmacological activity, Laureliopsis philippiana leaf essential oil extract (LP_EO) was chemically and biologically characterized in the present study. In vitro antioxidant potential was analyzed, and antitumor activity was evaluated in non-tumor and tumor cell culture lines. Caenorhabditis elegans was used as a model for evaluating toxicity, and the chemical composition of the essential oil was analyzed using gas chromatography–mass spectrometry. The oil contains six major monoterpenes: eucalyptol (27.7 %), linalool (27.6 %), isozaphrol (19.5 %), isohomogenol (12.6 %), α-terpineol (7.7 %), and eudesmol (4.8 %). Based on quantum mechanical calculations, isosafrole and isohomogenol conferred in vitro antioxidant and antimicrobial activity to LP_EO. In addition, LP_EO showed antimicrobial activity against clinical Helicobacter pylori isolates (MIC 64 and MBC > 128 μg·mL?1), Staphylococcus aureus (MIC 32 and MBC > 64 μg·mL?1), Escherichia coli (MIC 8 and MBC 16 μg·mL?1) and Candida albicans (MIC 64 and > 128 μg·mL?1). LP_EO could selectively inhibit the proliferation of epithelial tumor cell lines but showed low toxicity against Caenorhabditis elegans (0.39 to 1.56 μg·mL?1). Therefore, LP_EO may be used as a source of bioactive compounds in novel pharmacological treatments for veterinary and human application, cosmetics, or sanitation.  相似文献   

3.
This work investigated the effect of Potassium Permanganate (KMnO4) on graphene oxide (GO) properties, especially on electrical properties. The GO thin films were deposited on a glass substrate using drop casting technique and were analysed by using various type of spectroscopy (e.g. Scanning Electron Microscopy (SEM), Ultra- Violet Visible (UV–VIS), Fourier Transform Infrared (FTIR), X-Ray Diffraction (XRD), optical band gap, Raman Spectroscopy). Furthermore, the electrical experiments were carried out by using current–voltage (I-V) characteristic. The GO thin film with 4.5 g of KMnO4 resulted in higher conductivity which is 3.11 × 10?4 S/cm while GO with 2.5 g and 3.5 g of KMnO4 achieve 2.47 × 10?9 S/cm and 1.07 × 10?7 S/cm, respectively. This further affects the morphological (SEM), optical (band gap, UV–Vis, FTIR, and Raman), and crystalline structural (XRD) properties of the GO thin films. The morphological, elemental, optical, and structural data confirmed that the properties of GO is affected by different amount of KMnO4 oxidizing agent, which revealed that GO can potentially be implemented for electrical and electronic devices.  相似文献   

4.
《Arabian Journal of Chemistry》2020,13(10):7445-7452
Human alpha (α1)-acid glycoprotein (AGP) is an acute phase protein whose plasma concentration increases several-folds in the presence of various diseases. The variability in AGP plasma concentration is expected to have a huge impact on the drug binding equilibrium. Therefore, a precise measurement of AGP-drug binding is of great demand for drug development. In the current study, an ionic liquid-based aqueous two-phase system combined with affinity capillary electrophoresis (ILATPS/ACE) was utilised in order to improve the accuracy of AGP-drug binding analysis through the measurements of electrophoretic mobilities. The utilisation of ILATPS has shown to have a positive impact on the stability of AGP activity solution during the storage for an extended period of time. In addition, the effect of various alkyl chains (C2-C10) of imidazolium-based ILs with concentrations ranging between 10.00 and 1000.0 μmol L−1 on the AGP binding with the anti-cancer drugs chlorambucil (CHL) and dacarbazine (DAC) was examined by the system developed (ILATPS/ACE). A 100.00 μmol L−1 1-ethyl-3-methylimidazolium chloride (EMImCl) prepared in the physiological buffer conditions containing AGP (5.00–100.00 µmol L−1) has provided an accurate apparent binding constant of 1.99 ± 0.11 and 6.95 ± 0.14 L mmol−1 with CHL and DAC respectively. Apart from the ACE analysis, EMImCl/phosphate buffer solution was found to be a distinguished system that could lengthen the stability of AGP activity for a period of time reaching 90 days during the solution storage at 4.00 °C. This effect is thought to be due to the easy conversion of one-phase EMImCl/phosphate buffer/AGP at the ambient lab temperature into the two-phase solution at refrigerator temperature, 4.00 °C, and vice versa. Therefore, the ILATP/ACE system could be used to enhance the accuracy for other AGP-drug bindings with a fast, easy to use, and cost-effective analysis.  相似文献   

5.
The phytochemical investigation on the chemical constituents of dichloromethane-methanol (1:1) stem-bark extract of Cola lateritia K. Schum. (Sterculiaceae) led to the isolation and characterization of five pentacyclic triterpenoids, one fatty acid and two phytosteroids. The compounds were identified as heptadecanoic acid (1), maslinic acid (2), betulinic acid (3), lupenone (4), lupeol (5), friedelin (6), β-stigmasterol (7) and ß-sitosterol-3-O-ß-D-glucoside (8). Their structures were determined by NMR analysis (1H, 13C, DEPT-135, COSY, HMBC and HSQC), high-resolution mass spectrometry (HR-ESI-MS) and comparisons with published data in the literature. This work, to the best of our knowledge, is the first isolation and identification of these compounds in pure forms from Cola lateritia. Also, compounds 13 are reported for the first time from Cola genus. In vitro antibacterial activity of the isolated compounds (18) and the crude extract were evaluated against Bacillus subtilis, Staphylococcus epidermidis, Enterococcus faecalis, Mycobacterium smegmatis, Staphylococcus aureus, Enterobacter cloacae, Klebsiella oxytoca, Proteus vulgaris, Klebsiella pneumonia, Escherichia coli, Proteus mirabilis and Klebsiella aerogenes with streptomycin, nalidixic acid and ampicillin as standard antibacterial drugs. Compound 2 was active against E. faecalis (MIC = 18.5 µg/mL), and it was 6.9 and 28 times lower and active than that of streptomycin (MIC 128 µg/mL) and nalidixic acid (MIC > 512 µg/mL) respectively. All the isolated compounds and crude extract showed significant activities against the tested bacterial strains.  相似文献   

6.
Silver nanoparticles (AgNPs) have attracted considerable attention owing to their unique biological applications. AgNPs synthesized by plant extract is considered as a convenient, efficient and eco-friendly material. In this work, the aqueous extract of Areca catechu L. nut (ACN) was used as the reducing and capping agents for one-pot synthesis of AgNPs, and their antioxidant and antibacterial activities were investigated. UV (Ultra Violet)-visible spectrum and dynamic light scattering (DLS) analysis revealed that the size of AgNPs was sensitive to the synthesis conditions. The synthesized AgNPs were composed of well-dispersed particles with an small size of about 10 nm under the optimal conditions (pH value of extract was 12.0; AgNO3 concentration was 1.0 mM; reaction time was 90 min). In addition, scanning electron microscope with energy dispersive X-ray (SEM-EDX), transmission electron microscopy (TEM) and X-ray diffraction (XRD) results further verified that the synthesized AgNPs had a stable and well-dispersed form (Zeta potential value of ?30.50 mV and polydispersity index of 0.328) and a regular spherical shape (average size of 15–20 nm). In addition, Fourier transform infrared spectrometry (FTIR) results revealed that phytochemical constituents in ACN aqueous extract accounted for Ag+ ion reduction, capping and stabilization of AgNPs. The possible reductants in the aqueous extract of Areca catechu L. nut were identified by high-performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry (HPLC-ESI-qTOF/MS) method. More importantly, the synthesized AgNPs indicated excellent free radical scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH, IC50 = 11.75 ± 0.29 μg/mL) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+, IC50 = 44.85 ± 0.37 μg/mL), which were significant higher than that of ascorbic acid. Moreover, AgNPs exhibited an enhanced antibacterial activity against six selected common pathogens (especially Escherichia coli and Staphylococcus aureus) compared with AgNO3 solution. In a short, this study showed that the Areca catechu L. nut aqueous extract could be applied for eco-friendly synthesis of AgNPs.  相似文献   

7.
Artemisia annua L. (A. annua) has been used as herbal medicine in China for thousands of years for clearing deficiency heat, treating malaria and removing jaundice. A rapid, sensitive and specific liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC–ESI–MS/MS) method was developed, validated, and successfully used for simultaneous quantification of the active components in rat plasma after oral administration of A. annua extract. Molecular docking of each component with drug metabolizing enzymes was carried out to explore the effect of each component on CYP-mediated drug metabolism. Two coumarins (scopolin (SPL) and scopoletin (SPLT)), three flavonoids (rutin (RUT), chrysosplenol D (CHD), casticin (CAS)) and three sesquiterpenes (arteannuin B (ARN), dihydroartemisinic acid (DARM) and artemisinic acid (ARM)) were detected in rat plasma after oral administration. CHD and CAS were rapidly absorbed into rat blood with the Tmax values of 0.11 ± 0.04 h and 0.13 ± 0.05 h, respectively. Their half-lives (t1/2 2.68 ± 3.62 h and 0.33 ± 0.07 h) were shorter. SPLT were also rapidly absorbed into the blood (Tmax 0.15 ± 0.03 h), but exhibited a longer half-life (t1/2 6.53 ± 1.84 h), indicating that it could be effective in vivo for a longer period of time. The peak time of SPL, RUT, DARM and ARM ranged from 1 ~ 4 h, demonstrating that they could maintain considerable concentrations for a longer time. ARN showed strong enterohepatic circulation in rats, leading to slower onset time and longer effect. A few components including SPLT, CHD, CAS and ARN could be metabolized into their corresponding II phase metabolites combining with glucuronic acid or sulfuric acid. RUT could decompose its glycosyl to generate genin. The molecular docking results indicated that those flavonoids and coumarins of A. annua interacting with CYPs mainly through hydrogen bonding and π-π stacking had better CYP450 enzyme binding ability than the sesquiterpenoids, which were easier to induce drug interactions. This study presented an integrated strategy for investigating the pharmacokinetic behaviors of eight components in A. annua and laid the foundation for revealing the mechanism of action of A. annua in the organism.  相似文献   

8.
Lepidium sativum is cultivated mainly for the edible oil from its seeds, and considered as an unutilized and neglected crop despite its important properties. Its oil fraction is used to produce soap and stabilize linseed oil when it is mixed with wild mustard seed oil. Once converted into fatty acid methyl esters, it represents a good substitute for imported petroleum diesel after alkaline transesterification reaction. In the current study, Lepidium sativum seeds cultivated in Tunisia and the physicochemical properties and nutrient profile of its cold pressed seed oil were investigated. The antioxidant, antibacterial, and anti-inflammatory activities of the above oil were also assessed. Lepidium sativum seed oil was abundant in both linolenic (35.59 ± 1.9%) and oleic (21.14 ± 0.63%) acids, and high amounts of β-sitosterol (42.57 ± 2.96 mg/100 g), campesterol (20.04 ± 1.4 mg/100 g) and Δ 5,24 stigmastadienol (11.82 ± 0.45 mg/100 g) were detected. The total tocopherol content of Lepidium sativum seed oil reached 136.83 ± 7.6 mg/100 g with a predominance of γ-tocopherol (86.23%). Its seed oil exhibited an IC50 of 10.33 ± 0.05 mg/mL and a radical scavenging activity of 415.6 ± 40 Trolox Equivalent Antioxidant Capacity (TEAC) for the DPPH and the ABTS assays, respectively. While the thermal analysis proved a high thermal stability of Lepidium sativum seed oil, that of eight bacteria and one fungal strain showed no noticeable bacterial or antifungal effects. It was also revealed that Lepidium sativum seed oil held a remarkable anti-inflammatory activity. Hence, the obtained results evidenced remarkable chemical, antioxidant and anti-inflammatory properties of Lepidium sativum seed oil, which might potentially be promising for enhancing human health and preventing age-related diseases.  相似文献   

9.
《Arabian Journal of Chemistry》2020,13(12):8783-8792
The objective of this study was to assess the effects of stress on physiology/biochemical component of S. polyrhiza and its impact on CuNPs synthesis and bioethanol production. NaCl with RV5 provokes oxidative stress in S. polyrhiza and significantly increase MAD, Proline, H2O2, ROS, SOD and APX activity compare to control condition. Starch accumulation in S. polyrhiza was found 354% higher and correspond 4.4 times higher ethanol yield under stress condition compare to control. CuNPs were synthesized with an average size of 23–26 nm by purified fraction of APX having 37 KDa MW, 1.44 IU specific activity. Synthesized CuNPs were stable up to 15 consecutive cycles and potency against wide range of reactive dyes. The maximum remedial efficiency of synthesized CuNPs for COD and BOD was 55263.3 ± 3298.5 mg/m3min. and 30560.3 ± 1987.5 mg/m3min. respectively for RV5 wastewater. 0.072 mg/g of bioethanol was produced from the wet pulp remaining after nanoparticles synthesis. High efficiency of CuNPs and significant production of Ethanol, indicate that the feasibility for circular model for continuous industrial wastewater treatment.  相似文献   

10.
This work reports a novel controlling mechanism of analyte diffusion in a micro volume solution (100 μL) into a hydrophobic membrane. This study was designed to facilitate the liquid–solid conversion using membrane for laser-induced breakdown spectroscopy (LIBS) in quantitatively analyzing aqueous lead (Pb) pollutant. Herein, we used the same analyte (Pb) solution applied on one side of the membrane (back side) to enhance the diffusion of the analyte administered from the other side (front side). The membrane was confirmed hydrophobic with contact angles ranged from 104.6°±1.3° to 106.28°±1.7°, where its morphology had smooth surface and randomly distributed small pores. We found the limit of detection (LOD) to reach 184.2 mg/L derived from a calibration curve with Pb I (405.7 nm) line intensity as the dependent variable, where the root-mean-square-errors (RMSE) and correlation (R2) were 1.08 M and 0.999, respectively. In comparison, the membrane back side with distilled water achieved LOD as low as 134.53 mg/L obtained from the similar calibration curve (RMSE = 5.8 M; R2 = 0.986). Further analysis using the LIBS spectra confirmed the role of the analyte ion on the back side of the membrane in enhancing the analyte diffusion.  相似文献   

11.
《Comptes Rendus Chimie》2019,22(8):574-584
Microwave-assisted extraction (MAE) at atmospheric pressure has been demonstrated as an efficient technology for the extraction of polymeric hemicelluloses from spruce sawdust. This technology was shown to be more efficient than conventional extraction. MAE leads to a high solubilization of wood and a selective extraction of hemicellulose polymers with high molecular weights. To optimize MAE, different treatment powers (125–573 W) of presoaked spruce sawdust in water and 1 M sodium hydroxide solution for a period of 60 min were tested. The yield of hemicellulose extraction increased with the microwave power in both mediums, but with a clear advantage for presoaked samples in basic medium. The characterization of extracted hemicelluloses has shown high extraction selectivity depending on the medium of impregnation of sawdust before MAE: High-molecular-mass acetylated galactoglucomannans (Mw ∼ 41 kDa) were isolated after presoaking in water and higher molecular mass arabinoglucoronoxylans (Mw ∼ 66 kDa) in basic medium.  相似文献   

12.
The impregnation of magnetite (Mt) nanoparticle (NPs) onto Musa acuminata peel (MApe), to form a novel magnetic combo (MApe-Mt) for the adsorption of anionic bromophenol blue (BPB) was studied. The SEM, EDX, BET, XRD, FTIR and TGA were used to characterize the adsorbents. The FTIR showed that the OH and CO groups were the major sites for BPB uptake onto the adsorbent materials. The average Mt crystalline size on MApe-Mt was 21.13 nm. SEM analysis revealed that Mt NPs were agglomerated on the surface of the MApe biosorbent, with an average Mt diameter of 25.97 nm. After Mt impregnation, a decrease in BET surface area (14.89 to 3.80 m2/g) and an increase in pore diameter (2.25–3.11 nm), pore volume (0.0052–0.01418 cm3/g) and pH point of zero charge (6.4–7.2) was obtained. The presence of Pb(II) ions in solution significantly decreased the uptake of BPB onto both MApe (66.1–43.8%) and MApe-Mt (80.3–59.1%), compared to other competing ions (Zn(II), Cd(II), Ni(II)) in the solution. Isotherm modeling showed that the Freundlich model best fitted the adsorption data (R2 > 0.994 and SSE < 0.0013). In addition, maximum monolayer uptake was enhanced from 6.04 to 8.12 mg/g after Mt impregnation. Kinetics were well described by the pseudo-first order and liquid film diffusion models. Thermodynamics revealed a physical, endothermic adsorption of BPB onto the adsorbents, with ΔHo values of 15.87–16.49 kJ/mol, corroborated by high desorption (over 90%) of BPB from the loaded materials. The viability of the prepared adsorbents was also revealed in its reusability for BPB uptake.  相似文献   

13.
IntroductionScientific evidence about biological profile of natural products can support their traditional uses. The current work was aimed to assess phytochemical and biological profile of nine medicinal plants collected from Herbalists.MethodsExtracts prepared in different solvents were subjected to phytochemical, antioxidant, enzyme inhibitory, cytotoxic, and antimicrobial activities. Reverse phase-high performance liquid chromatography (RP-HPLC) analysis was performed for the quantification of polyphenols.ResultsResults showed methanol extract (M) being potent as compared to others. Gentian lutea M showed maximum extract recovery (15.00 ± 0.11 % w/w) and TFC (30.82 ± 0.21 μg QE/mg extract). Nigella sativa M displayed highest TPC (44.99 ± 0.43 μg GAE/mg extract) and TAC (334.72 ± 0.35 μg AAE/ mg extract). Results showed noteworthy quantities of vanillic acid, rutin, kaempferol, emodin in ethyl acetate (EA) and methanol (M) extracts of plants assessed by RP-HPLC. Gentisic acid was highest (11.75 µg/mg extract) in T. arjuna M extract. Similarly, maximum %FRSA (82.28 ± 0.03 %) and TRP (160.40 ± 0.38 μg AAE/ mg extract) were depicted by Terminalia chebula and Chamomilla recutita, respectively. Moreover, Mentha longifolia and G. lutea M demonstrated noteworthy (p < 0.05) antibacterial activity against Staphylococcus aureus (14 ± 0.7 mm) and Klebsiella pneumoniae (12 ± 0.3 mm), respectively. Curcuma amada, C. recutita, Murraya koenigii and G. lutea M had significant α-glucosidase activity. Another good solvent for extraction was ethyl acetate (EA), whose extracts were secondary to methanol in producing significant biological profile. For example, EA of N. sativa (TPC: 1.46 ± 0.45 µg GAE/ mg extract), G. lutea (TRP: 160.33 ± 0.52 μg AAE/mg extract: ZOI of 12 ± 0.5 mm in K. pneumoniae) and Mormodica charantia (α-amylase inhibition: 39.5 ± 0.10 %) showed significant bioactivities. All extracts displayed mild antifungal protein kinase inhibition activities and were significantly (greater than80 %: p < 0.05) cytotoxic to brine shrimps with negligible hemolytic activity.ConclusionBriefly, variable polarity solvent extracts of studied plants will be processed for isolation of antioxidant, cytotoxic, carbohydrate enzyme inhibitory and antibacterial compounds.  相似文献   

14.
A series of chalcone analogues (1–15) were synthesized by Claisen-Schmidt condensation in good yields (70–95%) and characterized by FT-IR, 1H NMR and mass spectral methods. Additionally, compounds 3 and 7 were characterized by 13C NMR. Antitubercular and antioxidant activities of the chalcones were evaluated by MABA and DPPH free radical assays. In MABA assay analogues 3 (MIC = 14 ± 0.11 µM) and 11 (MIC = 14 ± 0.17 µM) bearing fluorine and methoxy groups at para and meta positions were 1.8-times more active than the standard pyrazinamide (MIC = 25.34 ± 0.22 µM). The chalcone analogues such as compound 7 (IC50 = 4 ± 1 µg/mL) containing electron releasing groups such as OH at ortho position had slightly more antioxidant activity than Gallic acid (IC50 = 5 ± 1 µg/mL). The potential compounds 3, 7, 9 and 11 were less selective and toxic against human live cell lines-LO2. Further, molecular docking results of chalcones against anti-tubercular drug target isocitrate lyase (PDB ID: 1F8M) revealed that compound 3 and 11 shown least binding energies as ?7.6, and ?7.5 kcal/mol are in line with in vitro MABA assay, suggesting that these compounds 3 and 11 are strong inhibitor of isocitrate lyase. SwissADME programme estimated the drug likeliness properties of compounds 3, 7, 9 and 11. The lead molecules arisen through this study helps to develop new antitubercular and antioxidant agents.  相似文献   

15.
Fructus Psoraleae (FP), the dried ripe fruit of Psoralea corylifolia L., is a popular herbal medicine commonly applied for alleviating osteoporosis and vitiligo. But, until now, the dynamic variations of compounds in P. corylifolia have been less investigated during its growth, storage, and treatment by different temperatures, which is meaningful for guaranteeing the quality of FP. In this study, focused on these questions, with emphasis on the enzyme-driven dynamic transformation of coumarins, ultra-high performance liquid chromatography coupled with photodiode array detector (UHPLC-PDA) method was successfully established for the simultaneous determination of nine compounds. The distribution and accumulation of compounds were discussed and illuminated in different parts of P. corylifolia and samples harvested at different times. The characteristics of compounds' variation in flowers and fruits of P. corylifolia were identified. Through the market survey and quantitative study on FP, positive correlation was speculated between transformation from (iso)psoralenoside to (iso)psoralen via β-glucosidase and storage time, which was further confirmed by accelerated stability test. The effect of treated temperatures (40–210 °C) was unveiled on the enzyme activity and transformation from (iso)psoralenoside to (iso)psoralen in FP. And the focused compounds' transformation was mainly driven by β-glucosidase when the temperature was below 120 °C. Above 120 °C, β-glucosidase was completely inactivated, and the focused compounds' transformation was mediated by high-temperature, also the obvious degradation was found. Our results demonstrated that compounds' transformation characteristics arising from the growth, processing and storage of P. corylifolia are critical factors to ensure the quality of FP.  相似文献   

16.
《Arabian Journal of Chemistry》2020,13(12):9145-9165
A series of novel 3, 4-dihydro-3-methyl-2(1H)-quinazolinone derivatives with substituted amine moieties (113) and substituted aldehyde (S) were designed and synthesized by a reflux condensation reaction in the presence of an acid catalyst to get N-Mannich bases. Mannich bases were evaluated pharmacologically for their antioxidant, α-amylase enzyme inhibition, antimicrobial, cell cytotoxicity and anti-inflammatory activities. Most of the compounds exhibited potent activities against these bioassays. Among them, SH1 and SH13 showed potent antioxidant activity against DPPH free radical at IC50 of 9.94 ± 0.16 µg/mL and 11.68 ± 0.32 µg/mL, respectively. SH7, SH10 and SH13 showed significant results in TAC and TRP antioxidant assays, comparable to that of ascorbic acid. SH2 and SH3 showed potent activity in inhibiting α-amylase enzyme at IC50 of 10.17 ± 0.23 µg/mL and 9.48 ± 0.17 µg/mL, respectively, when compared with acarbose (13.52 ± 0.19 µg/mL). SH7 was the most active against gram-positive and gram-negative bacterial strains, SH13 being the most potent against P. aeruginosa by inhibiting its growth up to 80% (MIC = 11.11 µg/mL). SH4, SH5 and SH6 exhibited significant activity against some fungal strains. Among the thirteen synthesized compounds (SH1-SH13), four were screened out based on the results of brine shrimp lethality assay (LD50) and cell cytotoxicity assay (IC50), to determine their anti-cancer potential against Hep-G2 cells. The study was conducted for 24, 48, and 72 h. SH12 showed potent results at IC50 of 6.48 µM at 72 h when compared with cisplatin (2.56 µM). An in vitro nitric oxide (NO) assay was performed to shortlist compounds for in vivo anti-inflammatory assay. Among shortlisted compounds, SH13 exhibited potent anti-inflammatory activity by decreasing the paw thickness to the maximum compared to the standard, acetylsalicylic acid (ASA).  相似文献   

17.
Justicia vahlii Roth. (acanthaceae) is an important medicinal food plant used in pain relief and topical inflammation. The present study aimed to evaluate phytochemical composition, toxicity, anti-inflammatory, antioxidant and enzyme inhibition potential of n-butanol extract of J. vahlii (BEJv). The extract prepared through maceration was found rich in total phenolic contents (TPC) 196.08 ± 6.01 mg of Gallic acid equivalent (mg GAE/g DE) and total flavonoid contents (TFC) 59.08 ± 1.32 mg of Rutin equivalent (mg RE/g DE). The UPLC-Q-TOF-MS analysis of BEJv showed tentative identification of 87 compounds and 19 compounds were detected in GC–MS analysis. The HPLC-PDA quantification showed the presence of 14 polyphenols amongst which kaempferol (3.45 ± 0.21 µg/ mL DE) and ferulic acid (2.31 ± 1.30 µg/ mL DE) were found in highest quantity. The acute oral toxicity study revealed the safety and biocompatibility of the extract up to 3000 mg/kg in mice. There was no effect of BEJv on human normal liver cells (HL 7702) and very low cytotoxic effect on liver cancer cells (HepG2) and breast cancer cells (MCF-7). In anti-inflammatory evaluation, the BEJv treated groups showed significant inhibition (p < 0.001) of late phase carrageenan induced paw edema at 400 mg/kg and increased the levels of oxidative stress markers; catalase, superoxide dismutase (SOD) and glutathione (GSH) while decreased the inflammatory markers; interleukin-1beta (IL-β) and tumor necrosis factor alpha (TNF-α) in paw tissue of mice. BEJv displayed highest results in Ferric reducing antioxidant power (FRAP) assay 97. 21 ± 2.34 mg TE (trolox equivalent)/g DE, and highest activity 3.32 ± 0.31 mmol ACAE (acarbose equivalent)/g D.E against α-glucosidase. Docking study showed good docking score by the tested compounds against the various clinically significant enzymes. Conclusively the current study unveiled J. vahlii as novel non-toxic source with good antioxidant-mediated anti-inflammatory potential which strongly back the traditional use of the species in pain and inflammation.  相似文献   

18.
Dioscorea nipponica Makino exhibits many biological activities, including relieving cough, eliminating phlegm and preventing asthma. The present study extensively evaluated the extraction process, major components, antioxidant, antibacterial and anti-inflammatory activities of total saponins extraction from Dioscorea nipponica Makino. In this study, the optimal extraction process of total saponins extract was optimized by single-factor test and response surface methodology as follows: extraction time 25 min, ethanol concentration 50 % and liquid to material ratio 55:1 ml/g, and the extraction rate was 1.72 %. Eighteen components were initially analyzed by UPLC-QTOF-MS method. Although total saponins extract exhibited mild antibacterial activities against Escherichia coli, Salmonella, Staphylococcus aureus and Streptococcus, and antioxidant activities against ferric-ion, ABTS and DPPH radicals, the perfect anti-inflammatory activity of TSE was demonstrated by significantly reducing the content of NO and the phagocytic activity in LPS induced RAW 264.7 cells, which provided a theoretical basis for the research and development of new anti-inflammatory Chinese medicine.  相似文献   

19.
Heavy metals (HMs), pollution of major environmental matrices and its attendant effects on human health and the environment, continue to generate huge scientific interest, particularly in monitoring and detection. Herein, the optical property of carboxymethyl cellulose stabilized silver nanoparticles (CMC-AgNPs), supported with ascorbic acid, is exploited as a colorimetric probe for the detection of toxic Au3+ ion in solution. The as-synthesized CMC-AgNPs showed sharp absorption maximum at 403 nm, with sparkling yellow color and average particles size distribution less than 10 nm. It was further characterized using ATR-FTIR, TEM, FESEM/EDS, XRD and DLS/zeta potential analyzer. Au3+ ion detection strategy involves the addition of ascorbic acid (AA) to a pH adjusted CMC-AgNPs, followed by the analyte addition. AA would facilitate the reduction of Au3+ on CMC-AgNPs (seed), with resultant color perturbations from light yellow to yellow, orange, ruby red and purple red, under 8 min incubation, at room temperature (RT). The CMC-AgNPs could also serve as a catalyst, by promoting AA mediated reduction of Au3+, in-situ. Moreover, we propose, that the color and the absorption spectra change is attributed to the deposition of gold nanoparticles (AuNPs), on the CMC-AgNPs/AA probe, to form (CMC-Ag@Au) nanostructures, depending on the analyte concentration. Absorbance ratio (A540/A403) showed good linearity with Au3+ concentration from 0.25 to 100.0 µM, and an estimated LOD of 0.061 µM. The assay was applied to Au3+ detection in environmental wastewater sample, showing satisfactory real sample detection potentiality.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号