首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hyperbranched aromatic and aliphatic poly(urea‐urethane)s were prepared by the one‐pot method using 2,4‐toluylene diisocyanate (TDI), isophorone diisocyanate, and 2(3‐isocyanatopropyl)cyclohexyl isocyanate as AA* monomers and diethanol amine and diisopropanol amine as B2B* monomers. The characteristics of the resulting polymers were very sensitive to slight changes in the reaction conditions, such as temperature, concentration, and type of catalyst used, as can be seen from the results of gel permeation chromatography and differential scanning calorimetry. The structures were analyzed in detail using 1H and 13C NMR spectroscopy. By using model compounds, the different isomeric structures of the TDI polymers were deduced, their percentages of their linear, terminal, and dendritic subunits were calculated, and their degree of branching (DB) was determined. DB values up to 70% were reached depending on the reaction conditions and stoichiometry of the monomers. The number of terminal groups decreased significantly when dibutylamine was used to stop the reaction instead of B2B*, indicating the presence of a significant number of unreacted isocyanate groups in the hyperbranched product when the polyaddition reaction was stopped. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3062–3081, 2004  相似文献   

2.
A calcium salt of mono(hydroxypentyl)phthalate [Ca(HPP)2] was synthesized by the reaction of 1,5‐pentanediol, phthalic anhydride, and calcium acetate. Four different bisureas such as hexamethylene bis(ω,N‐hydroxyethylurea), tolylene 2,4‐bis(ω,N‐hydroxyethylurea), hexamethylene bis(ω,N‐hydroxypropylurea), and tolylene 2,4‐bis(ω,N‐hydroxypropylurea) were prepared by reacting ethanolamine or propanolamine with hexamethylene diisocyanate (HMDI) or tolylene 2,4‐diisocyanate (TDI). Calcium‐containing poly(urethane‐urea)s (PUUs) were synthesized by reacting HMDI or TDI with 1:1 mixtures of Ca(HPP)2 and each of the bisureas with di‐n‐butyltin dilaurate as a catalyst. The PUUs were well characterized by Fourier transform infrared spectroscopy, 1H and 13C NMR, solid‐state 13C–cross‐polarization/magic‐angle spinning NMR, viscosity, solubility, elemental analysis, and X‐ray diffraction studies. Thermal properties of the polymers were also examined with thermogravimetric analyses and differential scanning calorimetry. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1809–1819, 2004  相似文献   

3.
Poly(ε‐caprolactone)‐based segmented polyurethanes (PCLUs) were prepared from poly(ε‐caprolactone) diol, diisocyanates (DI), and 1,4‐butanediol. The DIs used were 4,4′‐diphenylmethane diisocyanate (MDI), 2,4‐toluenediisocyanate (TDI), isophorone diisocyanate (IPDI), and hexamethylene diisocyanate (HDI). Differential scanning calorimetry, small‐angle X‐ray scattering, and dynamic mechanical analysis were employed to characterize the two‐phase structures of all PCLUs. It was found that HDI‐ and MDI‐based PCLUs had higher degree of microphase separation than did IPDI‐ and TDI‐based PCLUs, which was primarily due to the crystallization of HDI‐ and MDI‐based hard‐segments. As a result, the HDI‐based PCLU exhibited the highest recovery force up to 6 MPa and slowest stress relaxation with increasing temperature. Besides, it was found that the partial damage in hard‐segment domains during the sample deformation was responsible for the incomplete shape‐recovery of PCLUs after the first deformation, but the damage did not develop during the subsequent deformation. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 557–570, 2007  相似文献   

4.
Water‐based polyurethane–urea (WPUU) nanoparticles containing 4,4′‐methylenedi‐p‐phenyl diisocyanate (MDI) and isophorone diisocyanate (IPDI) were synthesized by a stepwise prepolymer mixing process, that is, the consecutive formation of hydroxyl‐terminated and isocyanate‐terminated polyurethane prepolymers. The reaction behavior, chemical structure, and consequent morphology of the polyurethane prepolymers and WPUU were investigated with Fourier transform infrared (FTIR), gel permeation chromatography, and NMR techniques with MDI concentrations ranging from 0 (pure IPDI) to 50% with respect to the total moles of isocyanate. Wide‐angle X‐ray diffraction and differential scanning calorimetry patterns showed that the crystallinity of WPUU, which mostly originated from crystallizable poly(tetramethylene adipate) polyol, was significantly affected by the MDI content. Both the crystallinity and melting temperature of WPUU decreased as the MDI content increased. Deconvoluted relative peak areas of the carbonyl region in the FTIR spectrum revealed that the effect of hydrogen bonding among the hard segments became favorable as the MDI content increased, whereas the hydrogen bonding of the soft segments significantly decreased. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4353–4369, 2004  相似文献   

5.
The morphological features of three flexible slabstock polyurethane foams based on varied contents of 2,4 and 2,6 toluene diisocyanate (TDI) isomers are investigated. The three commercially available TDI mixtures, that is, 65:35 2,4/2,6 TDI, 80:20 2,4/2,6 TDI, and 100:0 2,4/2,6 TDI were used. The foams were characterized at different length scales with several techniques. Differences in the cellular structure of the foams were noted with scanning electron microscopy. Small‐angle X‐ray scattering was used to demonstrate that all three foams were microphase‐separated and possessed similar interdomain spacings. Transmission electron microscopy revealed that the aggregation of the urea phase into large urea‐rich regions decreased systematically on increasing the asymmetric TDI isomer content. Fourier transform infrared spectroscopy showed that the level of bidentate hydrogen bonding of the hard segments increased with the 2,6 TDI isomer content. Differential scanning calorimetry and dynamic mechanical analysis (DMA) were used to note changes in the soft‐segment glass‐transition temperature of the foams on varying the diisocyanate ratios and suggested that the perfection of microphase separation was enhanced on increasing the 2,6 TDI isomer content. The preceding observations were used to explain why the foam containing the highest content of the symmetric 2,6 TDI isomer exhibited the highest rubbery storage modulus, as measured by DMA. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 258–268, 2003  相似文献   

6.
Copolymers of monomers 2,4‐dichlorophenyl methacrylate (2,4‐DMA) and methyl methacrylate (MMA) were synthesized with different monomer feed ratios using toluene as a solvent and 2,2′‐azobisisobutyronitrile (AIBN) as an initiator at 70 °C. The copolymers were characterized by IR‐spectroscopy, and copolymer composition was determined with UV‐spectroscopy. The linearization method of Fineman–Ross was employed to obtain the monomer reactivity ratios. The molecular weights and polydispersity indexes were determined by gel permeation chromatography (GPC). Thermogravimetric analyses of polymers were carried out in nitrogen atmosphere. The homo‐ and copolymers were tested for their antimicrobial properties against selected microorganisms. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5227–5234, 2004  相似文献   

7.
We report side chain urethane–methacrylate comb polymers based on the renewable resource cardanol and its saturated analogue 3‐pentadecyl phenol and their self‐assembly into pores, spheres, vesicles, tubes, and so forth. The monomers were synthesized in one pot by coupling 1 equiv. of isophorone diisocyanate with 1 equiv. of cardanol/pentadecyl phenol followed by coupling with 1 equiv. of hydroxyethyl methacrylate. They were polymerized free radically using benzoyl peroxide as the initiator and were characterized by NMR and FTIR, and their molecular weights were determined by gel permeation chromatography. The unique polymer design had sites for self‐organization via hydrogen bonding of the side chain urethane units, π–π stacking interactions of the aromatic units as well as interdigitation of the long C15 alkyl side chains in the polymer. The morphologies of solvent cast polymer films were studied using microscopic techniques such as scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The polymers exhibited three‐dimensional honeycomb morphology in CHCl3, whereas in tetrahydrofuran, they formed spheres. The direct cardanol‐derived polymer PCIH showed a tendency for multiple morphologies such as spheres and tubes in tetrahydrofuran. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2996–3009, 2009  相似文献   

8.
A series of substituted N‐methylaniline‐blocked polyisocyanates based on 4,4′‐methylenebis(phenyl isocyanate) and poly(tetrahydrofuran) were prepared and characterized thoroughly with FTIR, 1H NMR, and 13C NMR spectroscopy methods. Compared with unsubstituted N‐methylaniline, a blocking agent with an electron‐releasing substituent at the para position took a shorter time, whereas those with an electron‐releasing substituent at the ortho position or an electron‐withdrawing substituent at the ortho and para positions took longer times for the blocking reaction. The thermal dissociation reactions of blocked polyisocyanates were carried out with an FTIR spectrophotometer attached to hot‐stage accessories under dynamic and isothermal conditions. The dynamic method was used to determine the deblocking temperature, and the isothermal method was used to calculate the deblocking kinetics and activation parameters. The cure times of blocked polyisocyanates with hydroxyl‐terminated polybutadiene were also determined. The deblocking temperatures, the results of cure‐time studies, and the kinetic parameters revealed that the thermal dissociation of the N‐methylaniline‐blocked polyisocyanates was retarded by electron‐donating substituents and facilitated by electron‐withdrawing substituents. The action of N‐methylanilines as blocking agents for isocyanate was explained by the formation of a four‐center, intramolecularly hydrogen‐bonded ring structure during the thermal dissociation of the blocked polyisocyanates. The formation of such a hydrogen‐bonded ring structure was confirmed and supported by variable‐temperature 1H NMR studies and entropy parameters, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1557–1570, 2007  相似文献   

9.
We studied the curing processes of several series of dimeric liquid‐crystalline epoxyimine monomers with 2,4‐toluene diisocyanate (TDI) alone or with added catalytic proportions of 4‐(N,N‐dimethylamino)pyridine. We obtained isotropic materials or liquid‐crystalline thermosets with different degrees of order, which depended on the structures of the monomers. To fix ordered networks, we had to do the curing in two steps when TDI was used alone as the curing agent. However, when a tertiary amine was added in catalytic proportions, the ordered networks were fixed in just one step. In this way, we were able to fix both nematic and smectic mesophases. The significance of the polarization of the mesogen for obtaining liquid‐crystalline thermosets was demonstrated. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2521–2530, 2003  相似文献   

10.
A novel long chain linear unsaturated terminal diisocyanate, 1,16‐diisocyanatohexadec‐8‐ene (HDEDI) was synthesized from oleic acid via Curtius rearrangement. Its chemical structure was identified by FTIR, 1H NMR, 13C NMR, and HRMS. This diisocyanate was used as a starting material for the preparation of entirely bio‐based polyurethanes (PUs) by reacting it with canola diol and canola polyol, respectively. The physical properties and crystalline structure of the PUs prepared from this diisocyanate were compared to their counterparts prepared from similar fatty acid‐derived diisocyanate, 1,7‐heptamethylene diisocyanate (HPMDI). The HDEDI based PUs demonstrated various different properties compared to those of HPMDI based PUs. For example, HDEDI based PUs exhibited a triclinic crystal form; whereas HPMDI based PUs exhibited a hexagonal crystal lattice. In addition, canola polyol‐HDEDI PU demonstrated a higher tensile strength at break than that of canola polyol‐HPMDI, attributed to the higher degree of hydrogen bonding associated with the former sample. Nevertheless, lower Young's modulus and higher elongation in canola polyol‐HDEDI PU were obtained because of the flexibility of the long chain introduced by the HDEDI diisocyanate. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3302–3310, 2010  相似文献   

11.
Two series of N-methylaniline-blocked isocyanates based on monomeric diisocyanates such as 4,4′-methylene bis(phenyl isocyanate), toluene-2,4-diisocyanate, isophorone diisocyanate and 1,6-diisocyanato hexane and their NCO terminated polyurethane prepolymer (polyisocyanates) were prepared and characterized thoroughly by FTIR, 1H NMR, 13C NMR and EI-Mass spectroscopic methods. The blocking reaction of N-methylaniline with aromatic isocyanates and aromatic polyisocyanates occur faster when compared to the aliphatic isocyanates. The deblocking reactions of blocked isocyanates were carried out under dynamic and isothermal conditions using hot-stage FTIR spectrophotometer. The dynamic method was used to determine the deblocking temperature, and the isothermal method was used to calculate kinetics and thermodynamics parameters. Cure reactions of blocked isocyanates with hydroxyl-terminated polybutadiene were also followed to establish the structure-property relationship of the N-methylaniline-blocked isocyanates. The deblocking studies of blocked isocyanates reveal that the aromatic isocyanates undergo deblocking easily compared to aliphatic isocyanates. The rate of deblocking reaction of N-methylaniline-blocked aromatic polyisocyanates was found to be higher compared to N-methylaniline-blocked aromatic monomeric diisocyanate adducts. On the other hand, this trend was just reverse in the cure-reaction studies. The dissolution behavior of N-methylaniline-blocked isocyanates in Terathane-2000, polypropylene glycol-2000, polycaprolactone diol-2000 and hydroxyl-terminated polybutadiene-2500 was also studied and found that all adducts are soluble in these polyols.  相似文献   

12.
A series of novel water-based non-ionic blocked polyurethane crosslinker (n-BPUC) dispersions have been synthesized by the reaction of toluene 2,4-diisocyanate (TDI), isophorone diisocyanate (IPDI), polyethylene glycol (PEG), 1,1,1-trimethylolpropane (TMP), 2-Ethoxyethanol (2-Et) and ?-caprolactam (CL). The physical properties of prepared n-BPUC dispersions such as viscosity, pH, and storage stability are measured and compared. The chemical structure of the prepared n-BPUC dispersions is confirmed by Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). Deblocking temperatures of the n-BPUC dispersions are analyzed by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) techniques. The thermal analysis reveals that deblocking temperature obtained by DSC and TGA techniques is compared and found to be in the order DSC < TGA. Based on DSC and TGA data, it is shown that deblocking of n-BPUC dispersions based on 2-Et start at lower temperatures compared to that of the ones based on CL. The TDI-based n-BPUCs show higher reactivity than the ones based on IPDI. Hydroxyl-terminated polyurethane (HPU) is introduced to estimate the crosslinking effect of the prepared n-BPUCs. The better tensile properties and water resistance of n-BPUC modified HPU films compared to pure HPU film demonstrate the good crosslinking effect of the prepared n-BPUCs.  相似文献   

13.
Diels–Alder (DA) adducts including 24, 48, and 96 bicyclo end groups on the dendritic periphery were prepared by the reaction of anthracene on the dendrimers (first to fourth generation) and 1,4‐benzoquinone as well as 1,4‐naphtoquinone in boiled toluene. The structural information of DA adducts on the dendritic periphery was received from the hyperfine structural analysis by 1H NMR spectroscopy. The gel permeation chromatography of DA products revealed very low polydispersity values and decreased regular retention time according to increasing generation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2155–2161, 2004  相似文献   

14.
Polyether polyols based on bisphenol‐S were prepared by alkoxylation and compared with analogs based on bisphenol‐A, as well as standard aromatic polyester, and polyether polyols for viscosity and temperature stability. Thermo‐oxidative stability was determined by thermo‐gravimetric analysis, pyrolysis gas chromatography/mass spectroscopy, and evolved gas analysis mass spectroscopy. Incorporation of the sulfone moiety was found to dramatically improve the thermo‐oxidative stability of the neat polyol. Significant char formation was observed with gas phase evolution of flame retardant SO2 and aromatic sulfone only apparent at about 600 °C. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2102–2108  相似文献   

15.
Biodegradable polyurethane elastomers with the potential for applications in medical implants were synthesized from the reaction of epoxy‐terminated polyurethane prepolymers (EUPs) with 1,6‐hexamethylenediamine as a curing agent. EUPs were themselves prepared from the reaction of glycidol and isocyanate‐terminated polyurethanes made from different molecular weights of poly(ε‐caprolactone) (CAPA) and 1,6‐hexamethylene diisocyanate. All materials were characterized by spectroscopic methods. The curing conditions were optimized by gel content measurements. The curing kinetic and kinetic parameters were determined from differential scanning calorimetry measurements. The effects of changing the crosslink density and crystallinity of elastomers via the alteration of the CAPA polyol molecular weight on the physical, mechanical, and degradation properties of the final elastomeric polymers were examined fully. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2985‐2996, 2005  相似文献   

16.
Novel polyurethanes (PUs) based on 2,2′‐[ethane‐1,2‐diylbis(nitrilomethylylidene)]diphenol and 2,2′‐[hexane‐1,6‐diylbis(nitrilomethylylidene)]diphenol as hard segments containing four aromatic diisocyanates (4,4′‐diphenylmethane diisocyanate, toluene 2,4‐diisocyanate, isophorone diisocyanate, and hexamethylene diisocyanate) have been prepared. Fourier transform infrared, UV spectrophotometry, fluorescence spectroscopy, 1H NMR and 13C NMR spectroscopy, thermogravimetric analysis, and differential thermal analysis have been used to determine the structural characterization and thermal properties of the segmented PUs. All the PUs contain domains of both semicrystalline and amorphous structures, as indicated by X‐ray diffraction. The acoustic properties have been calculated with the group contribution method. Molecular dynamics simulations have been performed on all the PUs to estimate the cohesive energy density and solubility parameter values, which compare well with the values calculated with the group contribution method. Furthermore, the simulation protocols have been applied to the PUs to produce X‐ray diffraction plots to determine the phase morphology of the PUs. The surface properties of the PUs have been estimated from the simulation protocols. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6032–6046, 2006  相似文献   

17.
A new type of methacrylate monomer, [2‐oxo‐2‐(4‐acetyl) phenyl amino] ethylene methacrylate (APEMA), was synthesized. The oxime, 2,4‐dinitrophenylhydrazone, and thiosemicarbazone derivatives of poly{[2‐oxo‐2‐(4‐acetyl) phenyl amino] ethylene methacrylate} [poly(APEMA)] were prepared with hydroxylamine hydrochloride, 2,4‐dinitrophenylhydrazine, and thiosemicarbazone hydrochloride, respectively. The radical homopolymerization of APEMA was performed at 65 °C in a 1,4‐dioxane solution with benzoyl peroxide as an initiator. The monomer and its homopolymer were characterized with Fourier transform infrared and NMR techniques. The thermal stabilities of poly(APEMA) and its derivatives were investigated with thermogravimetric analysis and differential scanning calorimetry. The ultraviolet stability of the polymers were compared. The solubility and inherent viscosity of the polymers were also determined. The number‐average and weight‐average molecular weights and polydispersity index of the polymers were determined with gel permeation chromatography. The antibacterial and antifungal effects of the monomer and the polymer and its derivatives were also investigated on various bacteria and fungi. The activation energies of the thermal degradation of the polymers were calculated with the Ozawa method. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3157–3169, 2004  相似文献   

18.
The catalysis of imidine formation between an amine‐blocked polyurethane prepolymer and bisphthalide was studied with a series of metal alkoxides, phenoxides, and organotin compounds and tertiary amines. The carbon dioxide released during the reaction was followed for monitoring of the reaction. The metal alkoxides and phenoxides catalyzed the imidine formation reaction but did not catalyze the deblocking reaction, whereas the organotin compounds and tertiary amines showed no catalytic activity in the reaction between isocyanate and phthalide. With tin catalysts, the imidine formation reaction depended on the deblocking of the blocked prepolymer, but it was independent of deblocking with amine catalysts. The resultant poly(urethane imidine) copolymers were characterized with Fourier transform infrared, 1H NMR, 13C NMR, gel permeation chromatography, and thermogravimetric analysis techniques. The thermal stability of polyurethane increased significantly with the incorporation of imidine groups. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4236–4242, 2001  相似文献   

19.
A series of thermotropic liquid crystalline polyurethanes (LCPUs) were synthesized by the polyaddition reactions of 2,4‐toluene diisocyanate (2,4‐TDI) with 4,4′‐bis(6‐hydroxyhexoxy)biphenyl (BHHBP) and aliphatic diol. The intrinsic viscosities of the polymers were measured by Ubbelohde viscometer, and the chemical structure was confirmed by Fourier transform infrared spectroscopy (FT‐IR). The LCPUs were examined by differential scanning calorimetry (DSC), polarized optical microscopy (POM), wide angle X‐ray diffraction (WAXD), and thermogravimetric analysis (TGA). The intrinsic viscosities were 0.56–0.83 dl/g. According to the melting point (Tm) and the isotropic temperature (Ti) of the LCPUs, the temperature range of the liquid crystalline phase became wider with increased number of methylene spacers in the polyurethane. The LCPUs exhibited a nematic phase with a threaded texture and had a wide mesophase temperature range. The decomposition temperature of the LCPUs was >300°C. On WAXD, the LCPUs give a dispersing peak at 2θ ≈ 20°, and a strong diffraction peak at 2θ ≈ 25°. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
4‐Chloro‐3‐methyl phenyl methacrylate (CMPM) and 8‐quinolinyl methacrylate (8‐QMA) were synthesized through the reaction of 4‐chloro‐3‐methyl phenol and 8‐hydroxy quinoline, respectively, with methacryloyl chloride. The homopolymers and copolymers were prepared by free‐radical polymerization with azobisisobutyronitrile as the initiator at 70 °C. Copolymers of CMPM and 8‐QMA of different compositions were prepared. The monomers were characterized with IR spectroscopy and 1H NMR techniques. The copolymers were characterized with IR spectroscopy. UV spectroscopy was used to obtain the compositions of the copolymers. The monomer reactivity ratios were calculated with the Fineman–Ross method. The molecular weights and polydispersity values of the copolymers were determined with gel permeation chromatography. The thermal stability of the polymers was evaluated with thermogravimetric analysis under a nitrogen atmosphere. The homopolymers and copolymers were tested for their antimicrobial activity againstbacteria, fungi, and yeast. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 157–167, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号