首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface structure and cast film formation process of a ZnS‐nanocrystal‐modified M13 bacteriophage (ZnS–M13) were investigated. A ZnS–M13 film oriented under the influence of a capillary force was obtained on both single‐crystal and polycrystalline substrates. The film formation process was investigated with atomic force microscopy and scanning electron microscopy. The surface images showed that the degree of orientation of the molecular long axes greatly depended on the direction of force and the concentration of aqueous solutions. Controlling the aqueous solution concentration yielded a highly oriented ZnS–M13 film on an indium tin oxide plate. The ability to control the orientation of virus‐based films may lead to new types of hybrid materials in which the components are organized on several length scales. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 629–635, 2004  相似文献   

2.
Photosensitive ultrathin films with phosphate‐containing polyanions and diazoresin (DR) as a polycation were fabricated with a self‐assembly technique. The phosphate‐containing polyanions were poly(sodium phosphate), phosphorylated poly(vinyl alcohol), and DNA. The fabrication process was monitored by the determination of the absorbance from DR. The surface morphology of the multilayer films was observed with atomic force microscopy. Under ultraviolet irradiation, the linkage between the layers of the films changed from being ionic to being covalent; as a result, the stability of the films toward polar solvents increased. This kind of film may have applications for biosensor devices. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 222–228, 2002  相似文献   

3.
The morphologies of a series of blown films and machine‐direction‐oriented (MDO) films, all produced from high density polyethylene, were characterized. In the blown film process, the crystalline morphology develops while the melt is under extensional stress. In the MDO process, drawing takes place in the solid state and deforms the crystalline morphology of the starting film. The films were characterized by wide‐angle X‐ray scattering (WAXS), small‐angle X‐ray scattering (SAXS) and atomic force microscopy to determine the lamellar morphology. The effect of the type of deformation on the lamellar morphology was studied and relationships were developed between the lamellar and polymer chain morphology using SAXS and WAXS. Blown and MDO films were found to have very different morphologies. However, an integrated mechanism was developed linking the sequential events in the deformation and morphology development in blown and MDO films. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1834–1844, 2007  相似文献   

4.
To understand the influence to thermal conductivity by bridging in the polymer fibers, the thermal conductivity, and thermal diffusivity of ramie fiber and those bridged by formaldehyde (HCHO) using vapor‐phase method (VP‐HCHO treatment) were investigated in the lower temperature range. The thermal conductivities of ramie fiber with and without VP‐HCHO treatments decreased with decreasing temperature. Thermal diffusivities of ramie fiber with and without VP‐HCHO treatments were almost constant in the temperature range of 250–50 K, and increased by decreasing temperature below 50 K. Thermal conductivity and thermal diffusivity of ramie fiber decreased by VP‐HCHO treatment. The crystallinities and orientation angles of ramie fibers with and without VP‐HCHO treatment were measured using solid state NMR and X‐ray diffraction. These were almost independent of VP‐HCHO treatment. Although tensile modulus decreased slightly by VP‐HCHO treatment, the decrease could not explain the decrease in thermal conductivity and diffusivity with decreasing sound velocity. The decrease of the thermal diffusivity and thermal conductivity by VP‐HCHO treatment suggested the possibility of the reduction of the mean free path of phonon by HCHO in VP‐HCHO treated ramie fiber. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2754–2766, 2005  相似文献   

5.
Reflection–absorption infrared spectroscopy was used to study the crystallization behavior of poly(ethylene terephthalate) (PET) ultrathin films. The crystallinity of ultrathin films was estimated by the fraction of trans conformers of PET. The isothermal and nonisothermal crystallization kinetics of ultrathin films with different thicknesses were investigated. The thinner PET film showed slower kinetics during isothermal crystallization than the thicker film. Moreover, the final crystallinity of films with various thicknesses were reduced with decreasing thickness. An Avrami equation was used to fit the acquired results. The Avrami exponents decreased with the film thickness. As for the nonisothermal crystallization, the cold‐crystallization starting temperature shifted to a lower temperature as the film thickness increased. The influence of the substrate on the crystallization kinetics of the films was also studied. The half‐crystallization times and final crystallinities of ultrathin films adsorbed onto a self‐assembled‐monolayer‐treated surface and an untreated substrate were clearly different, although their thickness dependence was similar. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4440–4447, 2004  相似文献   

6.
The aim of the present study was to control entanglements in order to regulate the properties of polymeric solids. Initially, fabrication of polymeric solids with few entanglements was attempted. Films of the DNA–cationic surfactant, cetyltrimethylammonium bromide (CTAB) (DNA–CTA), were cast from ethanol solution at room temperature. Morphological examination of DNA–CTA complex films using atomic force microscopy (AFM) revealed that these films were constructed by particle‐like substances. Geometrical analysis of AFM images showed that the particle‐like substances were the aggregates of several DNA–CTA globules. Mechanical characterization suggested that there were fewer entanglements than with normal plastic films. Small angle X‐ray scattering experiments during annealing indicated that molecular motions were highly excited in the surface region of each particle. In conclusion, a globular polymeric film with fewer entanglements was fabricated. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 730–738  相似文献   

7.
Chiral polyacrylates with bornyl end‐capped side chains with four kinds of mesogenic moieties (azobenzene, biphenyl, benzoyloxy biphenyl, and phenyl benzoate) were prepared. The phase properties of the polymers were investigated with X‐ray diffraction, differential scanning calorimetry, and polarizing optical microscopy. The thermogravimetric characteristics, the glass‐transition temperatures and weight‐average molecular weights, of the homopolymers were evaluated. The optical properties of the synthesized polymers in diluted solutions and in the thin‐film state were also evaluated. The optical behavior of the composite films upon photoirradiation was investigated through the change in the transmittance of the probe light triggered by ultraviolet (365‐nm) irradiation. Ultraviolet irradiation and heat treatment caused a reversible intensity change of the probe light at λ = 400 nm. The shrinkage of the photoisomerization of the composite films was also investigated with atomic force microscopy. A spot contraction appeared on the surface when it was irradiated with a laser light spot. The contraction was recovered by heat treatment at 80 °C for 10 min. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1075–1092, 2004  相似文献   

8.
A series of diblock copolymers prepared from styrenic monomers was synthesized using atom transfer radical polymerization. One block was derived from styrene, whereas the second block was prepared from a styrene modified with an amphiphilic PEGylated‐fluoroalkyl side chain. The surface properties of the resulting polymer films were carefully characterized using dynamic contact angle, XPS, and NEXAFS measurements. The polymer morphology was investigated using atomic force microscope and GISAXS studies. The block copolymers possess surfaces dominated by the fluorinated unit in the dry state and a distinct phase separated microstructure in the thin film. The microstructure of these polymers is strongly influenced by the thin film structure in which it is investigated. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 267–284, 2009  相似文献   

9.
To simplify the fabrication of multilayer light‐emitting diodes, we prepared a p‐phenylenevinylene‐based polymer capped with crosslinkable styrene through a Wittig reaction. Insoluble poly(p‐phenylenevinylene) derivative (PPVD) films were prepared by a thermal treatment. The photoluminescence and ultraviolet–visible (UV–vis) absorbance of crosslinked films and noncrosslinked films were studied. We also studied the solvent resistance of crosslinked PPV films with UV–vis absorption spectra and atomic force microscopy. Double‐layer devices using crosslinked PPVD as an emitting layer, 2‐(4‐tert‐butylphenyl)‐5‐phenyl‐1,3,4‐oxadiazole (PBD) in poly(methyl methacrylate) as an electron‐transporting layer, and calcium as a cathode were fabricated. A maximum luminance efficiency of 0.70 cd/A and a maximum brightness of 740 cd/m2 at 16 V were demonstrated. A 12‐fold improvement in the luminance efficiency with respect to that of single‐layer devices was realized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2124–2129, 2004  相似文献   

10.
The aim of this investigation was to study the siloxane, ? Si? O? Si? , film formation on Ti substrate by using mono‐, bis‐ and tris‐aminosilanes. The ultimate goal was to obtain a smooth, well‐organized and stable siloxane film with suitable surface energy. Such films are expected to perform well in adhering resins to dental metal alloys when the films contain reactive functional groups. Aminosilanes were prepared as 0.5 vol.% solutions in dilute ethanol (50 vol.% ethanol in deionized water), with their natural pH of ~ 9. The substrates were silanized in two ways: silane was allowed to react at room temperature or was cured for 1 h at 110°C. The surface characterization was carried out by reflectance–absorbance Fourier transform infrared spectroscopy (RA‐FTIR), x‐ray photoelectron spectroscopy (XPS), contact angle measurement and atomic force microscopy (AFM). Siloxane film thickness measurements were not made. According to spectral analysis, all silanes indicated covalent bond formation with titanium. ?Si? O? Ti? and ?Si? O? Si? bonds were clearly seen in the spectra, suggesting that chemical retention had taken place. After curing at elevated temperature, the spectral bands seemed to be stronger than those on samples cured at room temperature. Curing of hydrolyzed silanes at elevated temperature seemed to enhance the siloxane layer formation, derived from aminosilanes, on the Ti substrate. This might have an influence on the hydrolytic stability of organosilane‐promoted adhesion between Ti and dental resins. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Assembly of ultrathin polymer multilayer films by click chemistry   总被引:1,自引:0,他引:1  
Layer-by-layer (LbL) assembly is a versatile and robust technique for fabricating tailored thin films of diverse composition. Herein we report a new method of covalent coupling, click chemistry, to facilitate the LbL assembly of thin films. Linear film growth was observed using both UV-vis and FTIR spectroscopy, and film thicknesses were determined by ellipsometry and atomic force microscopy. The assembled films are shown to be stable in a wide pH range. This technique offers the potential to enable the synthesis of new types of stable and responsive LbL films from a variety of polymers.  相似文献   

12.
Ellipsometry and atomic force microscopy (AFM) were used to study the film thickness and the surface roughness of both ‘soft’ and solid thin films. ‘Soft’ polymer thin films of polystyrene and poly(styrene–ethylene/butylene–styrene) block copolymer were prepared by spin‐coating onto planar silicon wafers. Ellipsometric parameters were fitted by the Cauchy approach using a two‐layer model with planar boundaries between the layers. The smooth surfaces of the prepared polymer films were confirmed by AFM. There is good agreement between AFM and ellipsometry in the 80–130 nm thickness range. Semiconductor surfaces (Si) obtained by anisotropic chemical etching were investigated as an example of a randomly rough surface. To define roughness parameters by ellipsometry, the top rough layers were treated as thin films according to the Bruggeman effective medium approximation (BEMA). Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased etching time, although AFM results depend on the used window size. The combined use of both methods appears to offer the most comprehensive route to quantitative surface roughness characterisation of solid films. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
New copolyimides containing perylenediimide, oxadiazole and hexafluoroisopropylidene moieties were prepared by one‐step polycondensation reaction in solution at high temperature of aromatic diamines containing preformed oxadiazole ring with a mixture of a dianhydride having a perylene ring and another dianhydride with hexafluoroisopropylidene unit. The thermal stability and glass transition temperatures of these copolyimides were measured and compared with those of related polyimides. The solid polymers were also studied by polarized light microscopy and X‐ray diffraction which revealed a semicrystalline state consisting of face‐to‐face arranged columns of perylenediimide units. The film‐forming ability and properties of the resulting thin films were investigated by using atom force microscopy and scanning electron microscopy which showed that the films were organized into self‐assembled rod‐like structures. The UV‐Vis and photoluminescence properties in solution and in solid state were also investigated. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4230–4242, 2010  相似文献   

14.
Surface morphology of bisphenol‐A polycarbonate (BAPC) thin films, with thickness ranging from 30 to 1000 nm on silicon substrates was studied by atomic force microscopy. The films were prepared by spincasting from 1,2‐dichloroethane solutions of 0.25–5.0 wt % BAPC. Even though longer annealing than 250 h was necessary for complete crystallization for bulk BAPC, high crystallinity was observed for 30 nm thick film after annealing at 200 °C for 48 h in vacuum. Positron annihilation lifetime spectroscopy measurements showed that the free volume hole size in 30 nm thick film was larger than that of bulk at 200 °C. Comparison of the BAPC concentration in the precursor solution with the overlap concentration suggests that the high crystallinity of the 30 nm BAPC film is due to less entangled chains caused by rapid removal of the solvent from the dilute solution. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

15.
Poly(p-phenylenevinylene)s with amines and pentafluorophenyl esters on side chains were synthesized and assembled on solid substrates by sequential layer-by-layer (LBL) deposition. This approach enables the creation of robust multilayer thin films via in-situ covalent coupling reactions between successive layers. The buildup of the multilayers was followed by UV/vis absorption spectroscopy and ellipsometry. The observed complex assembly behavior suggests that both covalent and hydrogen-bonding interactions are involved in the formation of multilayer films. The organized structure and surface morphology of resultant multilayers were investigated by reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. This covalent LBL method was further applied to generate conjugated polymer micropatterns using microstamped self-assembled monolayers as templates.  相似文献   

16.
We investigate the dewetting of aqueous, evaporating polymer [poly(acrylic acid)] solutions cast on glassy hydrophobic (polystyrene) substrates. As in ordinary dewetting, the evaporating films initially break up through the nucleation of holes that perforate the film, but the rapidly growing holes become unstable and form nonequilibrium patterns resembling fingering patterns that arise when injecting air into a liquid between two closely spaced plates (Hele–Shaw patterns). This is natural because the formation of holes in thin films is similar to air injection into a polymer film where the thermodynamic driving force of dewetting is the analogue of the applied pressure in the flow measurement. The patterns formed in the rapidly dewetting and evaporating polymer films become frozen into a stable glassy state after most of the solvent (water) has evaporated, leaving stationary patterns that can be examined by atomic force microscopy and optical microscopy. Similar patterns have been observed in water films evaporating from mica substrates, block copolymer films, and modest hole fingering has also been found in the dewetting of dry polymer films. From these varied observations, we expect this dewetting‐induced fingering instability to occur generally when the dewetting rate and film viscosity are sufficiently large. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2825–2832, 2002  相似文献   

17.
Aggregate dispersions of P3HT in two series of solvent mixtures, chloroform:dichloromethane and toluene:dichloromethane, are used to study the impact of the evaporation velocity and film thickness on the P3HT films processed using two spin‐coating speeds (1000 rpm and 2000 rpm). The structural order and surface morphology were investigated with UV/Vis absorption spectroscopy and atomic force microscopy techniques. There is no evidence that the characteristics of the liquid phase P3HT dispersions impact the structures of the films, which is in agreement with a previous study of drop cast P3HT films that were dried over much longer time periods. An association is observed between the extent of aggregation in the liquid phase and the thickness and surface roughness parameters of the films. However, the structural order does not correlate with the thickness of the films, which was previously reported for polymer films processed from amorphous polymer solutions in pure organic solvents. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 330–343  相似文献   

18.
The role of formaldehyde (HCHO) in vegetable‐aldehyde–collagen cross‐linking reaction was investigated at the B3LYP/6‐31+G(d) level, where lysine (LYS) was used as model of collagen and catechin (EC) as model of condensed vegetable tannin. Atomic charge and Frontier molecular orbital analysis show that intermediates formed by HCHO reacting with LYS or EC, that is, MLYS, MEC‐6, and MEC‐8, still have both nucleophilic and electrophilic sites, which are elements to form ternary cross‐linking in vegetable‐aldehyde–collagen system. The analysis of energy gap between HOMO (highest occupied molecular orbit) and LUMO (lowest unoccupied molecular orbit) indicate that the intermediate of HCHO–LYS residues (MLYS) can further react with free HCHO to form product P‐N(CH2OH)2 (P‐N‐represents amino acid residue; N represents nitrogen atom on side chain), but the reaction of intermediate MLYS with free EC is difficult to take place. So, the probability of forming ternary cross‐linking structure of amino acid residue–HCHO–EC is small, if HCHO is added before vegetable tannin in vegetable‐aldehyde–collagen system. However, the reactions of EC–HCHO intermediates (MEC‐6 and MEC‐8) with free amino acids, HCHO–amino acid residue intermediate (MLYS), as well as with other EC–HCHO intermediates (MEC‐6 and MEC‐8), are very easy to take place. The reaction enthalpy also shows that the cross‐linking tendency is favorable in thermodynamics. So, it can be deduced that covalent cross‐linking among amino side chain of collagen and vegetable tannin may take place when aldehyde is added after vegetable tannin. In this way, a multiple point cross‐linking reaction occurs to create a high stabilization of collagen. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
To develop novel biomedical soft materials with degradability, amphiphilic poly(L ‐lactide)‐grafted dextrans (Dex‐g‐PLLAs) of relatively high sugar unit contents were synthesized with the trimethylsilyl protection method. The characteristic properties of solution‐cast films prepared from the obtained Dex‐g‐PLLAs were investigated. The water absorption and degradation rate of the Dex‐g‐PLLA films increased with increasing sugar unit content. The morphology of the bulk phase and top surface of the Dex‐g‐PLLA films was evaluated with transmission electron microscopy and atomic force microscopy, respectively. The bulk phase of the Dex‐g‐PLLA films with a sugar unit content of 16–25 wt % was found by transmission electron microscopy to form a lamellar type of phase‐separated structure composed of approximately 80–100‐nm‐wide nanodomains because of their amphiphilic and branched structures. The hydrophobic top surface for a Dex‐g‐PLLA film with a sugar unit content of 25 wt % covered with PLLA segments was confirmed by atomic force microscopy phase images to be easily converted to a wettable top surface covered with hydrophilic dextran aggregates showing an 8–10‐nm‐wide honeycomb pattern by means of annealing in water. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6402–6409, 2006  相似文献   

20.
Photocurable, ternary‐component mixtures of a 1:1 molar multifunctional thiol–ene (trithiol and triallyl ether) blend and a 16‐functional acrylate based monomer have been photopolymerized, and the final film properties of the ternary crosslinked networks have been measured. The photopolymerization kinetics, morphology, and mechanical and physical properties of the films have been investigated with real‐time infrared, atomic force microscopy, and dynamic mechanical analysis. The photopolymerization process is a combination of acrylate homopolymerization and copolymerizations of thiol with allyl ether and acrylate functionalities. The tan δ peaks of the photopolymerized ternary systems are relatively narrow and tunable over a large temperature range. The morphology is characterized by a distinct phase‐separated nanostructure. The photocured thiol–ene/acrylate ternary systems can be made to exhibit good mechanical properties with enhanced energy absorption at room temperature by the appropriate selection of each component concentration. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 822–829, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号