首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
We report the first successful design of a self-associating antiparallel coiled coil, APH. The simultaneous application of Coulombic and hydrophobic components results in a decided preference for the antiparallel alignment as judged by HPLC, sedimentation equilibrium, and chemical denaturation data. The designed peptide is of comparable stability to naturally occurring leucine zipper peptides and can be expressed in bacteria. These properties of APH suggest potential in vivo protein fusion and biomaterials applications.  相似文献   

2.
Coiled coils are one of the most abundant protein structural motifs and widely mediate protein interactions and force transduction or sensation. They are thus model systems for protein engineering and folding studies, particularly the GCN4 coiled coil. Major single-molecule methods have also been applied to this protein and revealed its folding kinetics at various spatiotemporal scales. Nevertheless, the folding energy and the kinetics of a single GCN4 coiled coil domain have not been well determined at a single-molecule level. Here we used high-resolution optical tweezers to characterize the folding and unfolding reactions of a single GCN4 coiled coil domain and their dependence on the pulling direction. In one axial and two transverse pulling directions, we observed reversible, two-state transitions of the coiled coil in real time. The transitions equilibrate at pulling forces ranging from 6 to 12 pN, showing different stabilities of the coiled coil in regard to pulling direction. Furthermore, the transition rates vary with both the magnitude and the direction of the pulling force by greater than 1000 folds, indicating a highly anisotropic and topology-dependent energy landscape for protein transitions under mechanical tension. We developed a new analytical theory to extract energy and kinetics of the protein transition at zero force. The derived folding energy does not depend on the pulling direction and is consistent with the measurement in bulk, which further confirms the applicability of the single-molecule manipulation approach for energy measurement. The highly anisotropic thermodynamics of proteins under tension should play important roles in their biological functions.  相似文献   

3.
The alpha-helical coiled coil is one of the best-studied and most well-understood protein folding motifs. In particular, the coiled coil can be made to self-assemble into a nanofibrous architecture with many potential applications in biomimetic engineering and elsewhere. The key to the assembly of such nanofibers has been the formation of "sticky ended" dimers through careful selection of electrostatically charged amino acids. In this work, we demonstrate for the first time that sticky ended dimers are not a prerequisite for alpha-helical coiled coil nanofiber formation. In contrast, we show that blunt-ended dimers are able to form nanofibers with a uniform diameter of 4 nm while being hundreds of nanometers in length. Furthermore, the length and lateral packing can be controlled through selection of amino acids not involved in the coiled coil interface.  相似文献   

4.
5.
In this paper, we present 1,2,3-triazole epsilon2-amino acids incorporated as a dipeptide surrogate at three positions in the sequence of a known alpha-helical coiled coil. Biophysical characterization indicates that the modified peptides retain much of the helical structure of the parent sequence, and that the thermodynamic stability of the coiled coil depends on the position of the incorporation of the epsilon-residue. Crystal structures obtained for each peptide give insight into the chemical behavior and conformational preferences of the non-natural amino acid and show that the triazole ring can participate in the backbone hydrogen bonding of the alpha-helix as well as template an interhelical crossing between chains in the bundle.  相似文献   

6.
A helical peptide designed to present an all-leucine core upon folding has been shown to exhibit concentration-dependent helicity and to exist as an ill-defined equilibrium population of oligomers. In marked contrast, an identical peptide covalently modified with a 2,2'-bipyridyl group at the N terminus forms a stable three-stranded parallel coiled coil in the presence of transition metal ions. We have employed paramagnetic Ni(2+) and Co(2+) ions to stabilize the trimeric assembly and to exploit their shift and relaxation properties in NMR structural studies. We find that metal-ion binding and helix-bundle folding are tightly coupled. Surprisingly, the three-helix bundle exhibits a dynamic N-terminal region, and a well-structured C-terminal half. The spectra indicate the presence of a dual conformation for the bundle extending from the N terminus to residue 12. The structure of the two isomeric forms has been ascertained from interpretation of NOEs in the Ni(II) complex and (1)H pseudocontact shifts in the Co(II) complex. Two different facial isomers with distinct susceptibility tensors were identified. The bulky leucine side chain at position 3 in the peptide chain appears to play a role in the conformational variation at the N terminus.  相似文献   

7.
8.
The first part of this paper contains an overview of protein structures, their spontaneous formation ("folding"), and the thermodynamic and kinetic aspects of this phenomenon, as revealed by in vitro experiments. It is stressed that universal features of folding are observed near the point of thermodynamic equilibrium between the native and denatured states of the protein. Here the "two-state" ("denatured state" <--> "native state") transition proceeds without accumulation of metastable intermediates, but includes only the unstable "transition state". This state, which is the most unstable in the folding pathway, and its structured core (a "nucleus") are distinguished by their essential influence on the folding/unfolding kinetics. In the second part of the paper, a theory of protein folding rates and related phenomena is presented. First, it is shown that the protein size determines the range of a protein's folding rates in the vicinity of the point of thermodynamic equilibrium between the native and denatured states of the protein. Then, we present methods for calculating folding and unfolding rates of globular proteins from their sizes, stabilities and either 3D structures or amino acid sequences. Finally, we show that the same theory outlines the location of the protein folding nucleus (i.e., the structured part of the transition state) in reasonable agreement with experimental data.  相似文献   

9.
10.
Polymer coiled coils are composed of entangled linear chains in a helical conformation. Their mechanical characteristics are interesting because these structures are involved in the composition of natural fibrillar structures. The method of molecular dynamics is used for the simulation of stretching at a constant rate for a superhelical fragment of myosin protein composed of two identical α helices containing 126 amino acid residues in each helix. The case of shear deformation of a molecule is considered (the load is applied to the N terminus of one chain and to the C terminus of another chain). In this case of loading, slippage of chains with respect to each other can occur. Deformation of a molecule proceeds in several stages. At the initial stage, the superhelix is unfolded and there is a gradual unfolding of end fragments of individual α helices; this process is accompanied by their displacement with respect to the helical fragment of the neighboring chain. In this case, the reaction force increases. At the second stage of stretching, the process passes to the mechanism of deformation when, in the central part of the molecule, α-helical fragments of both chains unfold. In this region, the reaction-force-extension curve shows a plateau region. Between unfolded fragments, new hydrophobic contacts and hydrogen bonds are formed, and fragments of the β structure emerge. Once all turns of α helices in the central parts of the molecule are unfolded, the mechanism of deformation changes and further extension of a molecule proceeds via straightening of previously unfolded central fragments, a process that is accompanied by an increase in the reaction force. When chains achieve their limiting extension, slippage commences with an accompanying decrease in the reaction force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号