首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
New metal complexes of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with salicylidine-2-aminobenzimidazole (SABI) are synthesized and their physicochemical properties are investigated using elemental and thermal analyses, IR, conductometric, solid reflectance and magnetic susceptibility measurements. The base reacts with these metal ions to give 1:1 (Metal:SABI) complexes; in cases of Fe(III), Co(II), Cu(II), Zn(II) and Cd(II) ions; and 1:2 (Metal:SABI) complexes; in case of Ni(II) ion. The conductance data reveal that Fe(III) complex is 2:1 electrolyte, Co(II) is 1:2 electrolyte, Cu(II), Zn(II) and Cd(II) complexes are 1:1 electrolytes while Ni(II) is non-electrolyte. IR spectra showed that the ligand is coordinated to the metal ions in a terdentate mannar with O, N, N donor sites of the phenloic -OH, azomethine -N and benzimidazole -N3. Magnetic and solid reflectance spectra are used to infer the coordinating capacity of the ligand and the geometrical structure of these complexes. The thermal decomposition of the complexes is studied and indicates that not only the coordinated and/or crystallization water is lost but also that the decomposition of the ligand from the complexes is necessary to interpret the successive mass loss. Different thermodynamic activation parameters are also reported, using Coats-Redfern method. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 3-methylglutarates were prepared as solids with general formula MC6 H8 O4 ×n H2 O, where n =0–8. Their solubilities in water at 293 K were determined (7.0×10−2 −4.2×10−3 mol dm−3 ). The IR spectra were recorded and thermal decomposition in air was investigated. The IR spectra suggest that the carboxylate groups are mono- or bidentate. During heating the hydrated complexes lose some water molecules in one (Mn, Co, Ni, Cu) or two steps (Cd) and then mono- (Cu) or dihydrates (Mn, Co, Ni) decompose to oxides directly (Mn, Cu, Co) or with intermediate formation of free metals (Co, Ni). Anhydrous Zn(II) complex decomposes directly to the oxide ZnO. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 4-methylphthalates were investigated and their composition, solubility in water at 295 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with molar ratio of metal to organic ligand of 1.0:1.0 and general formula: M [ CH3C6H3(CO2)2nH2o (n=1-3) were recorded and their decomposition in air were studied. During heating the hydrated complexes are dehydrated in one (Mn, Co, Ni, Zn, Cd) or two steps (Cu) and next the anhydrous complexes decompose to oxides directly (Cu, Zn), with intermediate formation of carbonates (Mn, Cd), oxocarbonates (Ni) or carbonate and free metal (Co). The carboxylate groups in the complexes studied are mono- and bidentate (Co, Ni), bidentate chelating and bridging (Zn) or bidentate chelating (Mn, Cu, Cd). The magnetic moments for paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II) attain values 5.92, 5.05, 3.36 and 1.96 M.B., respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)3,3-dimethylglutarates were investigated and their quantitative composition, solubility in water at 293 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with general formula MC7H10O4nH2O (n=0−2) were recorded and their thermal decomposition in air were studied. During heating the hydrated complexes of Mn(II),Co(II), Ni(II) and Cu(II) are dehydrated in one step and next all the anhydrous complexes decompose to oxides directly (Mn, Co, Zn) or with intermediate formation free metal (Ni,Cu) or oxocarbonates (Cd). The carboxylate groups in the complexes studied are bidentate. The magnetic moments for the paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II)attain values 5.62, 5.25, 2.91 and 1.41 M.B., respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Mn(II), Co(II), Ni(II) and Cu(II) complexes are synthesized with thiosemicarbazone (L) derived from pyrrole-2-carboxyaldehyde. These complexes are characterized by elemental analysis, molar conductance, magnetic susceptibility measurement, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO indicates that the complexes are non-electrolyte except Co(L)2(NO3)2 and Ni(L)2(NO3)2 complexes which are 1:2 electrolyte. All the complexes are of high-spin type. On the basis of spectral studies an octahedral geometry may be assigned for Mn(II), Co(II) and Ni(II) complexes except Co(L)2(NO3)2 and Ni(L)2(NO3)2 which are of tetrahedral geometry. A tetragonal geometry may be suggested for Cu(II) complexes.  相似文献   

6.
Nine new mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO2(VI) complexes of lomefloxacin drug were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, XRD, UV–vis, 1H NMR as well as conductivity and magnetic susceptibility measurements and thermal analyses. The dissociation constants of lomefloxacin and stability constants of its binary complexes have been determined spectrophotometrically in aqueous solution at 25 ± 1 °C and at 0.1 M KNO3 ionic strength. The discussion of the outcome data of the prepared complexes indicate that the lomefloxacin ligand behaves as a neutral bidentate ligand through OO coordination sites and coordinated to the metal ions via the carbonyl oxygen and protonated carboxylic oxygen with 1:1 (metal:ligand) stoichiometry for all complexes. The molar conductance measurements proved that the complexes are electrolytes. The powder XRD study reflects the crystalline nature for the investigated ligand and its complexes except Mn(II), Zn(II) and UO2(II). The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first steps followed by decomposition of the anions, coordinated water and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats–Redfern and Horowitz–Metzger methods. A comparative study of the inhibition zones of the ligand and its metal complexes indicates that metal complexes exhibit higher antibacterial effect against one or more bacterial species than the free LFX ligand. The antifungal and anticancer activities were also tested. The antifungal effect of almost metal complexes is higher than the free ligand. LFX, [Co(LFX)(H2O)4]·Cl2 and [Zn(LFX)(H2O)4]·Cl2 were found to be very active with IC50 values 14, 11.2 and 43.1, respectively. While, other complexes had been found to be inactive at lower concentration than 100 μg/ml.  相似文献   

7.
The thermal properties of the Cu(II), Ni(II) and Co(II) complexes of iminodiacetic acid (H2IMDA) were determined using TG, DTG and DSC techniques. The complexes, of general formula, MIMDA-2H2O evolved water of hydration from 50 to 150°C which was followed by the decomposition of the anhydrous complex in the 250 to 400°C temperature range. The thermal stability, as determined by procedural decomposition temperatures, was: Ni(II) >Co(II) >Cu(II). The thermal stability is discussed in terms of IR spectra, ΔH, and ΔS, as well as thermal data.  相似文献   

8.
Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 2,5-dichlorobenzoates were prepared and their compositions and solubilities in water at 295 K were determined. The IR spectra and X-ray diffractograms of the obtained complexes were recorded. The complexes of Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) were obtained as solids with a 1:2 molar ratio of metal to organic ligand and different degrees of hydration. When heated at a heating rate of 10 K min-1, the hydrated complexes lose some (Co, Zn) or all (Ni, Cu, Cd) of the crystallization water molecules and then decompose to oxide MO (Co, Ni) or gaseous products (Cu, Zn, Cd). When heated at a heating rate of 5 K min-1, the complexes of Ni(II) and Cu(II) lose some (Ni) or all (Cu) of the crystallization water molecules and then decompose directly to MO. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The Schiff base hydrazone ligand HL was prepared by the condensation reaction of 7-chloro-4-quinoline with o-hydroxyacetophenone. The ligand behaves either as monobasic bidentate or dibasic tridentate and contain ONN coordination sites. This was accounted for be the presence in the ligand of a phenolic azomethine and imine groups. It reacts with Cu(II), Ni(II), Co(II), Mn(II), UO(2) (VI) and Fe(II) to form either mono- or binuclear complexes. The ligand and its metal complexes were characterized by elemental analyses, IR, NMR, Mass, and UV-Visible spectra. The magnetic moments and electrical conductance of the complexes were also determined. The Co(II), Ni(II) and UO(2) (VI) complexes are mononuclear and coordinated to NO sites of two ligand molecules. The Cu(II) complex has a square-planar geometry distorted towards tetrahedral, the Ni(II) complex is octahedral while the UO(2) (VI) complex has its favoured heptacoordination. The Co(II), Mn(II) complexes and also other Ni(II) and Fe(III) complexes, which were obtained in the presence of Li(OH) as deprotonating agent, are binuclear and coordinated via the NNNO sites of two ligand molecules. All the binuclear complexes have octahedral geometries and their magnetic moments are quite low compared to the calculated value for two metal ions complexes and thus antiferromagnetic interactions between the two adjacent metal ions. The ligand HL and metal complexes were tested against a strain of Gram +ve bacteria (Staphylococcus aureus), Gram -ve bacteria (Escherichia coli), and fungi (Candida albicans). The tested compounds exhibited high antibacterial activities.  相似文献   

10.
The 1,10-phenanthroline (phen) complexes of Co(II), Ni(II), Cu(II) and Cd(II) orotates were synthesized and characterized by elemental analysis, magnetic susceptibility, spectral methods (UV-vis and FTIR) and thermal analysis techniques (TG, DTG and DTA). The Co(II), Ni(II), Cu(II) and Cd(II) ions in diaquabis(1,10-phenanthroline)metal(II) diorotate octahedral complexes [M(H2O)2(phen)2](H2Or)2·nH2O (M=Co(II), n=2.25; Ni(II), n=3; Cu(II) and Cd(II), n=2) are coordinated by two aqua ligands and two moles of phen molecules as chelating ligands through their two nitrogen atoms. The monoanionic orotate behaves as a counter ion in the complexes. On the basis of the first DTGmax, the thermal stability of the hydrated complexes follows the order: Cd(II), 68°C 68°C  相似文献   

11.
Four novel mixed-ligand complexes of Co(II), Ni(II), Cu(II), and Zn(II) with m-hydroxybenzoate (m-Hba) and N,N-diethylnicotinamide (Dena) were synthesized and characterized on the basis of elemental analysis, FT-IR spectroscopic study, and solid state UV-Vis spectrophotometric and magnetic-susceptibility data. The thermal behavior of the complexes was studied by combined TG-DTA methods in static air atmosphere, and the mass spectra were recorded. The Co(II), Ni(II), and Zn(II) complexes, except for the Cu(II) complex, contain two molecules of coordinated water, two m-Hba, and two Dena ligands per formula unit. In these complexes, the m-Hba and Dena behave as monodentate ligands via acidic oxygen and nitrogen of the pyridine ring. In the Cu(II) complex, the m-Hba is coordinated as monoanionic bidentate ligand through acidic oxygen and carbonyl oxygen. Dena is bonded with Cu2+ as monodentate ligand by the nitrogen atom of the pyridine ring. The decomposition pathways and the stability of the complexes are interpreted in terms of the proposed structural data. The final decomposition products were found to be the respective metal oxides. The article was submitted by the authors in English.  相似文献   

12.
The hippurates of Co(II), Ni(II), Cu(II) and Zn(II) were isolated from the solution, their quantitative composition and the way of coordination of metal — ligand were determined and the conditions and products of thermal decomposition during heating in air atmosphere up to 1273 K were studied. The complexes of Ni(II), Cu(II) and Zn(II) heated lose some water molecules and then decompose to MO. The hippurate of Co(II) heated loses some water molecules and then decomposes to CoO with intermediate formation Co3O4.
Zusammenfassung Aus Lösung wurden die Co(II)-, Ni(II)-, Cu(II)- und Zn(II)-Salze der Hippursäure gewonnen, ihre quantitative Zusammensetzung sowie die Art der Koordination der Metall-Ligandenbindung bestimmt. Weiterhin wurden die Bedingungen und Produkte der thermischen Zersetzung beim Erhitzen in einer Luftatmosphäre bis 1273 K untersucht. Die Komplexe von Ni(II), Cu(II) und Zn(II) verlieren beim Erhitzen ein paar Moleküle Wasser und zersetzen sich anschlieend zu MO. Co(II)-hippurat gibt beim Erhitzen einige Moleküle Wasser ab und zersetzt sich dann über die Zwischenstufe Co3O4 zu CoO.
  相似文献   

13.
A series of Co(II), Ni(II) and Cu(II) complexes have been synthesized with Schiff bases derived from 5-amino-1,3,4-thiadiazole-2-thiol and 8-formyl-7-hydroxy-4-methylcoumarin/8-acetyl-7-hydroxy-4-methylcoumarin. The chelation of the complexes has been proposed in the light of analytical, spectral (IR, UV–Vis), ESI-mass, magnetic, ESR and thermal studies. The measured molar conductance values indicate that the complexes are non-electrolytes. TG and DTA provide the useful information about the coordination of water molecules to the metal ion and the stability of the complexes. TG and DTA curves show that the Co(II) complexes decomposition takes place in two stages corresponds to loss due to water molecules and Schiff base moiety. Whereas, Ni(II) and Cu(II) complexes decomposition took place in three steps corresponding to the loss of coordinated water molecules, 1,3,4-thiadiazole moiety and coumarin moiety, respectively. The Schiff bases and their complexes have been screened for their antibacterial and antifungal activities. The results of these studies show the metal complexes to be more antibacterial and antifungal as compared to the uncomplexed coumarins.  相似文献   

14.
Some physicochemical properties of 2-chloro-4-nitrobenzoates of Co(II), Ni(II), and Cu(II) were studied. The complexes were obtained as mono-and dihydrates with a metal ion—ligand mole ratio of 1: 2. All complexes are polycrystalline compounds. Their colours depend on the kind of central ion: pink for Co(II) complex, green for Ni(II), and blue for Cu(II) complexes. Their thermal decomposition was studied only in the range of 293 K–523 K because it was found that on heating in air above 523 K 2-chloro-4-nitrobenzoates decompose explosively. Hydrated complexes lose crystallization water molecules in one step. During dehydration process no transformation of the nitro group to nitrito one took place. Their solubilities in water at 293 K are of the orders of 10−3-10−2 mol dm−3. The magnetic moment values of 2-chloro-4-nitrobenzoates determined in the range of 76 K–303 K change from 3.48μB to 3.82μB for Co(II) complex, from 2.24μB to 2.83μB for Ni(II) 2-chloro-4-nitrobenzoate, and from 0.31μB to 1.41μB for Cu(II) complex. 2-Chloro-4-nitrobenzoates of Co(II) and Ni(II) follow the Curie—Weiss law, but the complex of Cu(II) forms dimer.  相似文献   

15.
The thermal properties of the Ni(II), Co(II) and Cu(II) complexes of glycine were determined using TG, DTG and DSC techniques. The complexes, MGly2·nH2O (n = 1, 2), dehydrated in the temperature range of 75 to 200°C, followed by the decomposition of the anhydrous compounds in the temperature range of 200 to 400°C. The thermal stability of the complexes, as determined by procedural decomposition temperatures, was: Ni(II) >Co(II) >Cu(II).  相似文献   

16.
Four new complexes of 2,3,4-trimethoxybenzoic acid anion with manganese(II), cobalt(II), nickel(II) and copper(II) cations were synthesized, analysed and characterized by standard chemical and physical methods. 2,3,4-Trimethoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) are polycrystalline compounds with colours typical for M(II) ions. The carboxylate group in the anhydrous complexes of Mn(II), Co(II) and Ni(II) is monodentate and in that of Cu(II) monohydrate is bidentate bridging one. The anhydrous complexes of Mn(II), Co(II) and Ni(II) heated in air to 1273 K are stable up to 505–517 K. Next in the range of 505–1205 K they decompose to the following oxides: Mn3O4, CoO, NiO. The complex of Cu(II) is stable up to 390 K, and next in the range of 390–443 K it loses one molecule of water. The final product of its decomposition is CuO. The solubility in water at 293 K is of the order of 10–3 mol dm–3 for the Mn(II) complex and 10–4 mol dm–3 for Co(II), Ni(II) and Cu(II) complexes. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in 2,3,4-trimethoxybenzoates experimentally determined in the range of 77–300 K change from 5.64–6.57 μB (for Mn2+), 4.73–5.17 μB (for Co2+), 3.26–3.35 μB (for Ni2+) and 0.27–1.42 μB (for Cu2+). 2,3,4-Trimethoxybenzoates of Mn(II), Co(II) and Ni(II) follow the Curie–Weiss law, whereas that of Cu(II) forms a dimer.  相似文献   

17.
Mn(II), Co(II), Ni(II), Cu(II), Pd(II) and Ru(III) complexes of Schiff bases derived from the condensation of sulfaguanidine with 2,4‐dihydroxy benzaldehyde ( HL1 ), 2‐hydroxy‐1‐naphthaldehyde ( HL2 ) and salicylaldehyde ( HL3 ) have been synthesized. The structures of the prepared metal complexes were proposed based on elemental analysis, molar conductance, thermal analysis (TGA, DSC and DTG), magnetic susceptibility measurements and spectroscopic techniques (IR, UV‐Vis, and ESR). In all complexes, the ligand bonds to the metal ion through the azomethine nitrogen and α‐hydroxy oxygen atoms. The structures of Pd(II) complex 8 and Ru(III) complex 9 were found to be polynuclear. Two kinds of stereochemical geometries; distorted tetrahedral and distorted square pyramidal, have been realized for the Cu(II) complexes based on the results of UV‐Vis, magnetic susceptibility and ESR spectra whereas octahedral geometry was predicted for Co(II), Mn(II) and Ru(III) complexes. Ni(II) complexes were predicted to be square planar and tetrahedral and Pd(II) complexes were found to be square planar. The antimicrobial activity of the ligands and their metal complexes was also investigated against the gram‐positive bacteria Staphylococcus aures and Bacillus subtilis and gram‐negative bacteria, Escherichia coli and Pesudomonas aeruginosa, by using the agar dilution method. Chloramphenicol was used as standard compound. The obtained data revealed that the metal complexes are more or less, active than the parent ligand and standard. The X‐ray crystal structure of HL3 has been also reported.  相似文献   

18.
The complexes Mn(II), Co(II), Ni(II) and Zn(II) with 4-oxo-4H-1-benzopyran-3-carboxaldehyde were synthesized and characterized by elemental analysis, infrared and UV spectroscopy, X-ray diffraction patterns, magnetic susceptibility, thermal gravimetric analysis, conductivity and also solubility measurements in water, methanol and DMF solution at 298 K. They are polycrystalline compounds with various formula and different ratio of metal ion:ligand. Their formula are following: [MnL2(H2O)](NO3)2·2H2O, [CoL2](NO3)2·3H2O, [NiL2](NO3)2·3H2O, [CuL2](NO3)2·H2O and [ZnL3](NO3)2, where L = C10H6O3. The coordination of metal ions is through oxygen atoms present in 4-position of γ-pyrone ring and of aldehyde group of ligand. Chelates of Mn(II), Co(II), Ni(II) and Cu(II) obey Curie–Weiss law and they are high-spin complexes with the weak ligand fields. The thermal stability of analyzed complexes was studied in air at 293–1,173 K. On the basis of the thermoanalytical curves, it appears that thermal stability of anhydrous analysed chelates changed following: Cu (423 K) < Zn (438 K) ~ Co (440 K) < Ni (468 K). The gaseous products of thermal decomposition of those compounds in air atmosphere are following: CO2, CO, NO2, N2O, hydrocarbons and in case of hydrates also water. The molar conductance data confirm that the all studied complexes are 1:2 electrolytes in DMF solution.  相似文献   

19.
The preparation and characterization of 2-(2-benzimidazolylazo)-4-acetamidophenol (BIAAP) complexes are reported. Different physico-chemical methods like IR, Magnetic, solid reflectance spectra and molar conductance, were used to investigate the structure of BIAAP complexes. In particular, the thermal decomposition of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes of BIAAP is studied in nitrogen atmosphere. All the complexes do not contain coordinated water molecules but contain (2-4) water molecules of crystallization. The water molecules were removed in a single step. The complexes of Co(II) and Ni(II) ions exhibited a phase transition and the decomposition or combustion of BIAAP occurred in the second and subsequent steps. The final decomposition products were identified by mass spectrometry as the corresponding metal oxides or carbonate. The activation thermodynamic parameters, such as, energy of activation, enthalpy, entropy and free energy change of the complexes were evaluated and the stabilities of the thermal decomposition of the complexes are discussed. From the kinetic point of view, it is found that the thermal stability of the complexes follows the order Ni(II) > Cu(II) > Zn(II) > Fe(III) > Co(II) > Cd(II).  相似文献   

20.
Physico-chemical properties of 4-chloro-2-nitrobenzoates of Co(II), Ni(II), and Cu(II) were studied. The complexes were obtained as mono- and trihydrates with a metal ion to ligand ratio of 1:2. All analysed 4-chloro-2-nitrobenzoates are polycrystalline compounds with colours depending on the central ions: pink for Co(II), green for Ni(II), and blue for Cu(II) complexes. Their thermal decomposition was studied only in the range of 293–523 K, because it was found that on heating in air above 523 K 4-chloro-2-nitrobenzoates decompose explosively. Hydrated complexes lose crystallization water molecules in one step and anhydrous compounds are formed. The final products of their decomposition are the oxides of the respective transition metals. From the results it appears that during dehydration process no transformation of nitro group to nitrite takes place. The solubilities of analysed complexes in water at 293 K are of the order of 10–4–10–2 mol dm–3. The magnetic moment values of Co2+, Ni2+ and Cu2+ ions in 4-chloro-2-nitrobenzoates experimentally determined at 76–303 K change from 3.89 to 4.82 μB for Co(II) complex, from 2.25 to 2.98 μB for Ni(II) 4-chloro-2-nitrobenzoate, and from 0.27 to 1.44 μB for Cu(II) complex. 4-chloro-2-nitrobenzoates of Co(II), and Ni(II) follow the Curie–Weiss law. Complex of Cu(II) forms dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号