首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Reactions of [SbIIIBr6]3– with Br2 in HBr in the presence of N‐substituted quinolinium or isoquinolinium cations result in new complexes of hexabromidoantimonates of SbV and their polybromide adducts: (N‐MeQuin)2{[SbBr6](Br3)} ( 1 ), (N‐MeIsoquin)2{[SbBr6](Br3)} ( 2 ), and (N‐EtQuin)[SbBr6] ( 3 ). Thermal stability was studied; estimated energies of supramolecular Br ··· Br interactions were calculated.  相似文献   

2.
The lead‐free halide perovskite A3Sb2Br9 is utilized as a photocatalyst for the first time for C(sp3)?H bond activation. A3Sb2Br9 nanoparticles (A3Sb2Br9 NPs) with different ratios of Cs and CH3NH3 (MA) show different photocatalytic activities for toluene oxidation and the photocatalytic performance is enhanced when increasing the amount of Cs. The octahedron distortion caused by A‐site cations can change the electronic properties of X‐site ions and further affect the electron transfer from toluene molecules to Br sites. After the regulation of A‐site cations, the photocatalytic activity is higher with A3Sb2Br9 NPs than that with classic photocatalysts (TiO2, WO3, and CdS). The main active species involved in photocatalytic oxidation of toluene are photogenerated holes (h+) and superoxide anions (.O2?). The octahedron distortion by A‐site cations affecting photocatalytic activity remains unique and is also a step forward for understanding more about halide‐perovskite‐based photocatalysis. The relationship between octahedron distortion and photocatalysis can also guide the design of new photocatalytic systems involving other halide perovskites.  相似文献   

3.
In Nature, enzymes provide hydrophobic cavities and channels for sequestering small alkanes or long‐chain alkyl groups from water. Similarly, the porous metal oxide capsule [{MoVI6O21(H2O)6}12{(MoV2O4)30(L)29(H2O)2}]41? (L=propionate ligand) features distinct domains for sequestering differently sized alkanes (as in Nature) as well as internal dimensions suitable for multi‐alkane clustering. The ethyl tails of the 29 endohedrally coordinated ligands, L, form a spherical, hydrophobic “shell”, while their methyl end groups generate a hydrophobic cavity with a diameter of 11 Å at the center of the capsule. As such, C7 to C3 straight‐chain alkanes are tightly intercalated between the ethyl tails, giving assemblies containing 90 to 110 methyl and methylene units, whereas two or three ethane molecules reside in the central cavity of the capsule, where they are free to rotate rapidly, a phenomenon never before observed for the uptake of alkanes from water by molecular cages or containers.  相似文献   

4.
The brown crystals of [NEt4]2[Se3Br8(Se2Br2)] ( 1 ) were obtained when selenium and bromine reacted in the solution of acetonitrile in the presence of tetraethylammonium bromide. The crystal structure of 1 has been determined by the X‐ray methods and refined to R = 0.0308 for 10433 reflections. The crystals are monoclinic, space group P21 with Z = 2 and a = 12.0393(3) Å, b = 11.8746(3) Å, c = 13.1946(3) Å, β = 96.561(1)° (123 K). In the solid state structure the anion of 1 is built up of Se3Br8 unit which consists of a triangular arrangement of three planar SeBr4 units sharing a common edge through two μ3‐bridging Br atoms, and one Se2Br2 molecule which is linked to one of μ3‐bridging Br atoms. The three SeII atoms form a triangle which is almost perpendicular to the planes given by three SeBr4 moieties. The contact between the μ3Br and the SeI atom of the Se2Br2 molecule is 3.1711(8) Å and can be interpreted as a bond of the donor‐acceptor type with the μ3Br as donor and the Se2Br2 molecule as acceptor. The terminal SeII‐Br and μ3Br‐SeII bond lengths are in the ranges 2.3537(7)–2.4737(7) Å and 2.7628(7)–3.1701(7) Å, respectively. The bond lengths in coordinated Se2Br2 molecule are: SeI‐SeI = 2.2636(9) Å, SeI‐Br = 2.3387(11) and 2.3936(8) Å.  相似文献   

5.
Three three‐dimensional (3D) heterometallic lanthanide‐transition‐metal (hetero‐Ln‐TM) compounds with the formula [Ln6(Cu4Br3)(Cu2Br2)2(Cu2Br)(IN)20(H2O)12] · 2H2O [Ln = Gd ( 1 ), Ln = Sm ( 2 ), Ln = Eu ( 3 )] based on the linkages of one‐dimensional Ln organic chain and CumBrn units were synthesized by mixing Ln2O3 with isonicotinic acid (HIN = pyridine‐4‐carboxylic acid) under hydrothermal condition. During the synthesis, two ligands were used: the isonicotinate (IN) stabilizes the cluster and links the one‐dimensional Ln organic chains and CumBrn motif, whereas Br anions play a very important role in the formation of the distinct CumBrn units. It is interesting that there are three different Cu‐Br motifs: a closed four‐membered ring [Cu2Br2] subunit, a linear [Cu2Br] subunit, an S‐sharp [Cu4Br3] subunit. Strong fluorescence of compounds 2 and 3 suggests an efficient energy transfer from the ligand to Eu3+ ions. The luminescent investigation indicates that 2 and 3 are excellent candidates for fluorescent materials.  相似文献   

6.
The Red crystals of [PPh4]2[Se2Br6(Se2Br2)2] ( 1 ) were obtained when selenium and bromine reacted in the solution of acetonitrile in the presence of tetraphenylphosphonium bromide. The crystal structure of 1 has been determined by X‐ray diffraction and refined to R = 0.0201 for 4024 reflections. The crystals are triclinic, space group with Z = 2 and a = 11.2757(4) Å, b = 12.3347(5) Å, c = 12.4948(5) Å, α = 113.152(4)°, β = 114.745(4)°, γ = 91.208(3)° (120(2) K). In the solid state the anion of 1 is built up of the Se2Br6 core and two Se2Br2 molecules each of which is linked to one of the trans‐positioned terminal Brt atoms of the Se2Br6 core. The central Se2Br6 part consists of a nearly planar arrangement of two planar SeBr4 units sharing a common edge through two μ2‐bridging Br atoms. The contact between the Brt and the SeI atom of the Se2Br2 molecule is 3.0872(5) Å and can be interpreted as a bond of the donor‐acceptor type with the Brt as donor and the Se2Br2 molecule as acceptor. The terminal SeII–Br and μ2Br–SeII bond lengths are 2.3654(4), 2.6699(5) Å and 2.5482(5), 3.0265(5) Å, respectively. The bond lengths in the coordinated Se2Br2 molecule are: SeI–SeI = 2.2686(5) Å, SeI–Br = 2.3779(5) and 2.3810(5) Å.  相似文献   

7.
A calix-shaped polyoxometalate, [V12O32]4− (V12), stabilizes an anion moiety in its central cavity. This molecule-sized container has the potential to control the reactivity of an anion. The highly-reactive cyanate is smoothly trapped by V12 to form [V12O32(CN)]5−. In the CH3NO2 solution, cyanate abstracts protons from CH3NO2, and the resultant CH2NO2 is stabilized in V12 to form [V12O32(CH2NO2)]5− (V12(CH2NO2)). A crystallographic analysis revealed the double-bond characteristic short bond distance of 1.248 Å between the carbon and nitrogen atoms in the nitromethane anion in V12. 1H and 13C NMR studies showed that the nitromethane anion in V12 must not be exchanged with the nitromethane solvent. Thus, the V12 container restrains the reactivity of anionic species.  相似文献   

8.
Liu et al. [Chin. J. Struct. Chem. (1996). 15 , 371–373] reported the structure of 6‐hydroxy‐1,4‐diazepane di(hydrogen bromide), C5H12N2O·2HBr, which was interpreted in terms of neutral diazepane and HBr molecules. We found, however, ample evidence that the formation of an organic salt, consisting of a diammonium cation and two bromide anions, is more plausible. This interpretation is also in agreement with thermogravimetric analysis and with the observed solution behaviour. The crystal structure of 6‐hydroxy‐1,4‐diazepane‐1,4‐diium dibromide, C5H14N2O2+·2Br?, measured at 142 K, crystallized in the orthorhombic space group P212121. The structure displays O—H…Br and N—H…Br hydrogen bonding. Contact distances are given. A search in the Cambridge Structural Database for the singly‐bonded H—Br moiety revealed a total of 69 structures. The question, whether these structures really include HBr as neutral molecules or rather Br? anions and a protonated substrate such as an amine, is addressed.  相似文献   

9.
The nature of halogen bonding is examined via experimental and computational characterizations of a series of associates between electrophilic bromocarbons R? Br (R? Br=CBr3F, CBr3NO2, CBr3COCBr3, CBr3CONH2, CBr3CN, etc.) and bromide anions. The [R? Br, Br?] complexes show intense absorption bands in the 200–350 nm range which follow the same Mulliken correlation as those observed for the charge‐transfer associates of bromide anions with common organic π‐acceptors. For a wide range of the associates, intermolecular R? Br???Br? separations decrease and intramolecular C? Br bond lengths increase proportionally to the Br?→R? Br charge transfer; and the energies of R? Br???Br? bonds are correlated with the linear combination of orbital (charge‐transfer) and electrostatic interactions. On the whole, spectral, structural and thermodynamic characteristics of the [R? Br, Br?] complexes indicate that besides electrostatics, the orbital (charge‐transfer) interactions play a vital role in the R? Br???Br? halogen bonding. This indicates that in addition to controlling the geometries of supramolecular assemblies, halogen bonding leads to electronic coupling between interacting species, and thus affects reactivity of halogenated molecules, as well as conducting and magnetic properties of their solid‐state materials.  相似文献   

10.
Brown crystals of [NMe4]4[(Se4Br10)2(Se2Br2)2] ( 1 ) were obtained from the reaction of selenium and bromine in acetonitrile in the presence of tetramethylammonium bromide. The crystal structure of 1 was determined by X‐ray diffraction and refined to R = 0.0297 for 8401 reflections. The crystals are monoclinic, space group P21/c with Z = 4 and a = 12.646(3) Å, b = 16.499(3) Å, c = 16.844(3) Å, β = 101.70(3)° (123 K). In the solid‐state structure, the anion of 1 is built up of two [Se4Br10]2– ions. Each shows a triangular arrangement of three planar SeBr4 units sharing a common edge through two μ3‐bridging bromine atoms, and one SeBr2 molecule, which is linked to the SeII atoms of two SeBr4 units; between the Se4Br102– ions a dimerized Se2Br2 molecule (Se4Br4) is situated and one SeI atom of each Se2Br2 molecule has two weak contacts [3.3514(14) Å and 3.3952(11) Å] to two bromine atoms of one SeBr4 unit. Four SeI atoms of a dimerized Se2Br2 molecule are in a almost regular planar tetraangular arrangement. Contacts between the SeII atom of the SeBr2 molecule and the SeII atoms of two SeBr4 units are 3.035(1) Å and 3.115(1) Å, and can be interpreted as donor‐acceptor type bonds with the SeII atoms of SeBr4 units as donors and the SeBr2 molecule as acceptor. The terminal SeII–Br and μ3‐Br–SeII bond lengths are in the ranges 2.3376(10) to 2.4384(8) Å and 2.8036(9) to 3.3183(13) Å, respectively. The bond lengths in the dimerized Se2Br2 molecule are: SeI–SeI = 2.2945(8) Å and 3.1398(12), SeI–Br = 2.3659(11) and 2.3689(10) Å.  相似文献   

11.
In the structural motifs of two isomorphous triclinic salts, (C5H6Br2N3)2[MBr4] (M = CdII and MnII), each [MBr4]2− anion interacts with eight surrounding 2,6‐diamino‐3,5‐dibromopyridinium cations through intermolecular C/N—H...Br and Br...Br interactions, leading to a three‐dimensional framework structure. The cations show a minor degree of π–π stacking, adding extra stability to the three‐dimensional architecture.  相似文献   

12.
The reaction of 1‐thia‐4,7‐di­azacyclo­nonane with bromo­acetyl bromide in CHCl3 affords the unexpected salt 4‐(2‐bromo­acetyl)‐8‐oxo‐1‐thionia‐4,7‐di­aza­bi­cyclo­[5.2.2]­un­decane bromide, C10H16BrN2O2S+·Br. Two units of the salt are linked by S⋯Br contacts about a crystallographic inversion centre, thus forming dimers that are linked by Br⋯Br contacts into extended ribbons. S⋯O contacts between these ribbons generate a two‐dimensional sheet.  相似文献   

13.
The title compounds, di‐μ‐bromido‐bis[bromido(1‐carboxymethyl‐4‐aza‐1‐azoniabicyclo[2.2.2]octane‐κN4)(nitrito‐κ2O,O′)cadmium(II)] dihydrate, [Cd2Br4(C8H15N2O2)2(NO2)2]·2H2O, (I), and aquabromido(1‐cyanomethyl‐4‐aza‐1‐azoniabicyclo[2.2.2]octane‐κN4)bis(nitrito‐κ2O,O′)cadmium(II) monohydrate, [CdBr(C8H14N3)(NO2)2(H2O)]·H2O, (II), are two‐dimensional hydrogen‐bonded metal–organic hybrid complexes. In (I), the complex is situated on a centre of inversion so that each symmetry‐related CdII atom is coordinated by two bridging Br atoms, one monodentate Br atom, one chelating nitrite ligand and one organic ligand, yielding a significantly distorted octahedral geometry. The combination of O—H...O and O—H...Br hydrogen bonds produces centrosymmetric R66(16) ring motifs, resulting in two‐dimensional layers parallel to the ab plane. In contrast, the complex molecule in (II) is mononuclear, with the CdII atom seven‐coordinated by two bidentate nitrite groups, one N atom from the organic ligand, one monodentate Br atom and a water O atom in a distorted pentagonal–bipyramidal environment. The combination of O—H...O and O—H...Br hydrogen bonds produces R54(14) and R33(8) rings which lead to two‐dimensional layers parallel to the ac plane.  相似文献   

14.
The perhalogenated closo‐dodecaborate dianions [B12X12]2? (X=H, F, Cl, Br, I) are three‐dimensional counterparts to the two‐dimensional aromatics C6X6 (X=H, F, Cl, Br, I). Whereas oxidation of the parent compounds [B12H12]2? and benzene does not lead to isolable radicals, the perhalogenated analogues can be oxidized by chemical or electrochemical methods to give stable radicals. The chemical oxidation of the closo‐dodecaborate dianions [B12X12]2? with the strong oxidizer AsF5 in liquid sulfur dioxide (lSO2) yielded the corresponding radical anions [B12X12] ? ? (X=F, Cl, Br). The presence of radical ions was proven by EPR and UV/Vis spectroscopy and supported by quantum chemical calculations. Use of an excess amount of the oxidizing agent allowed the synthesis of the neutral perhalogenated hypercloso‐boranes B12X12 (X=Cl, Br). These compounds were characterized by single‐crystal X‐ray diffraction of dark blue B12Cl12 and [Na(SO2)6][B12Br12] ? B12Br12. Sublimation of the crude reaction products that contained B12X12 (X=Cl, Br) resulted in pure dark blue B12Cl12 or decomposition to red B9Br9, respectively. The energetics of the oxidation processes in the gas phase were calculated by DFT methods at the PBE0/def2‐TZVPP level of theory. They revealed the trend of increasing ionization potentials of the [B12X12]2? dianions by going from fluorine to bromine as halogen substituent. The oxidation of all [B12X12]2? dianions was also studied in the gas phase by mass spectrometry in an ion trap. The electrochemical oxidation of the closo‐dodecaborate dianions [B12X12]2? (X=F, Cl, Br, I) by cyclic and Osteryoung square‐wave voltammetry in liquid sulfur dioxide or acetonitrile showed very good agreement with quantum chemical calculations in the gas phase. For [B12X12]2? (X=F, Cl, Br) the first and second oxidation processes are detected. Whereas the first process is quasi‐reversible (with oxidation potentials in the range between +1.68 and +2.29 V (lSO2, versus ferrocene/ferrocenium (Fc0/+))), the second process is irreversible (with oxidation potentials ranging from +2.63 to +2.71 V (lSO2, versus Fc0/+)). [B12I12]2? showed a complex oxidation behavior in cyclic voltammetry experiments, presumably owing to decomposition of the cluster anion under release of iodide, which also explains the failure to isolate the respective radical by chemical oxidation.  相似文献   

15.
A new organic–inorganic hybrid compound, catena‐poly[bis(1‐ethyl‐3‐methylimidazolium) [μ5‐bromido‐tri‐μ3‐bromido‐tri‐μ2‐bromido‐pentacuprate(I)]], {(C6H11N2)2[Cu5Br7]}n, has been obtained under ionothermal conditions from a reaction mixture containing Ba(OH)2·8H2O, Cu(OH)2·2H2O, As2O5, 1‐ethyl‐3‐methylimidazolium bromide and distilled water. The crystal structure consists of complex [Cu5Br7]2− anions arranged in sinusoidal {[Cu5Br7]2−}n chains running along the a axis, which are surrounded by 1‐ethyl‐3‐methylimidazolium cations. Three of the five unique Br atoms and one of the three CuI atoms occupy special positions with half‐occupancy (a mirror plane perpendicular to the b axis, site symmetry m). The CuI ions are in a distorted tetrahedral coordination environment, with four Br atoms at distances ranging from 2.3667 (10) to 2.6197 (13) Å, and an outlier at 3.0283 (12) Å, exceptionally elongated and with a small contribution to the bond‐valence sum of only 6.7%. Short C—H...Br contacts build up a three‐dimensional network. The Cu...Cu distances within the chain range from 2.8390 (12) to 3.0805 (17) Å, indicating the existence of weak CuI...CuI cuprophilic interactions.  相似文献   

16.
The lead-free halide perovskite A3Sb2Br9 is utilized as a photocatalyst for the first time for C(sp3)−H bond activation. A3Sb2Br9 nanoparticles (A3Sb2Br9 NPs) with different ratios of Cs and CH3NH3 (MA) show different photocatalytic activities for toluene oxidation and the photocatalytic performance is enhanced when increasing the amount of Cs. The octahedron distortion caused by A-site cations can change the electronic properties of X-site ions and further affect the electron transfer from toluene molecules to Br sites. After the regulation of A-site cations, the photocatalytic activity is higher with A3Sb2Br9 NPs than that with classic photocatalysts (TiO2, WO3, and CdS). The main active species involved in photocatalytic oxidation of toluene are photogenerated holes (h+) and superoxide anions (.O2). The octahedron distortion by A-site cations affecting photocatalytic activity remains unique and is also a step forward for understanding more about halide-perovskite-based photocatalysis. The relationship between octahedron distortion and photocatalysis can also guide the design of new photocatalytic systems involving other halide perovskites.  相似文献   

17.
In the V(V)H2O2/AcOH system, C5–C20 n-alkanes, isooctane, and neohexane undergo oxidation to ketones and alcohols; the oxidation products of branched alkanes are indicative of a C–C bond cleavage in these substrates. A concept is developed, according to which the peroxo complexes of vanadium(V) are responsible for alkane oxidation. These complexes can transfer the oxygen atom or the O radical cation to a substrate. The formation of nitrous oxide was found in the oxidation of molecular nitrogen in the H2O2/V(V)/CF3COOH system.  相似文献   

18.
The compounds tert‐butylarsenium(III) tri‐μ‐chlorido‐bis[trichloridotitanium(IV)], (C4H12As)[Ti2Cl9] or [tBuAsH3][Ti2(μ‐Cl)3Cl6], (II), and bis[bromidotriphenylarsenium(V)] di‐μ‐bromido‐μ‐oxido‐bis[tribromidotitanium(IV)], (C18H15AsBr)2[Ti2Br8O] or [Ph3AsBr]2[Ti2(μ‐O)(μ‐Br)2Br6], (III), were obtained unexpectedly from the reaction of simple arsane ligands with TiIV halides, with (II) lying on a mirror plane in the unit cell of the space group Pbcm. Both compounds contain a completely novel ion, with [tBuAsH3]+ constituting the first structurally characterized example of a primary arsenium cation. The oxide‐bridged titanium‐containing [Ti2(μ‐O)(μ‐Br)2Br6]2− dianion in (III) is also novel, while the bromidotriphenylarsenium(V) cation is structurally characterized for only the second time.  相似文献   

19.
The gelation behavior of cationic surfactants with different counterions, Br?, [FeCl3Br]?, and [CeCl3Br]?, in imidazolium ionic liquids (ILs) and protic ethylammonium nitrate was investigated. Small‐angle X‐ray scattering measurements and freeze‐fracture transmission electron microscopy observations revealed the lamellar phases of metallosurfactant ionogels. The characteristics of imidazolium ILs, including the size and type, have effects on metallosurfactant ionogel properties, such as transformation temperatures, interlayer spacing, and mechanical strength. Cubic fluorite structured cerium oxide nanoparticles (CeO2 NPs) were produced by using metallosurfactant ionogels as precursors. Cubic fluorite CeO2 exhibited good catalase mimetic activity toward H2O2 to generate O2, providing more multiple mimetic enzyme activities of CeO2 NPs for H2O2.  相似文献   

20.
Three 1‐methyl‐4,4′‐bipyridinium (MQ+)‐based complexes, {[Cd(MQ)(p‐BDC)Br]?H2O}n ( 1 ), {[Cd(MQ)(m‐BDC)(H2O)Br]?3H2O}n ( 2 ) and Cu(MQ)Br2 ( 3 ) (p‐H2BDC = 1,4‐benzenedicarboxylic acid, m‐H2BDC = 1,3‐benzenedicarboxylic acid), have been synthesized and structurally characterized. Compounds 1 and 2 are one‐dimensional coordination polymers constituted of one coordinated MQ+ cation, one coordinated Br? ion and chains of Cd2+ ions connected by deprotonated BDC2? units, which both have photochromism but different decolorization behaviors. The structures and photoresponsive behaviors controlled by auxiliary ligands have been explored. Compound 3 is constituted of one Cu+ center, one MQ+ ligand and two coordinated Br? ions in a ‘V’ configuration, exhibiting no photochromism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号