首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Solid State Sciences》2001,3(5):593-602
The thermal behavior and crystallographic characteristics of nine compounds, PbnMOn(XO4) with M = Bi, Pb, X = V, P, As, S and n = 1, 2, 4, are reported. A previously reported γ phase for Pb2BiO2(VO4) was shown to consist of a mixture of PbBiO(VO4) and Pb4BiO4(VO4) that resulted from a kinetically controlled decomposition of Pb2BiO2(VO4) at elevated temperatures. The relationship between the α, β and δ transitions for Pb2BiO2(VO4) was clarified. All of these phases contain the tetrahedral anion XO4 that imparts thermal and structural similarities as well as specifications that can be ascribed to anion size differences.  相似文献   

2.
The electronic structures of six ternary metal oxides containing isolated vanadate ions, Ba3(VO4)2, Pb3(VO4)2, YVO4, BiVO4, CeVO4 and Ag3VO4 were studied using diffuse reflectance spectroscopy and electronic structure calculations. While the electronic structure near the Fermi level originates largely from the molecular orbitals of the vanadate ion, both experiment and theory show that the cation can strongly influence these electronic states. The observation that Ba3(VO4)2 and YVO4 have similar band gaps, both 3.8 eV, shows that cations with a noble gas configuration have little impact on the electronic structure. Band structure calculations support this hypothesis. In Pb3(VO4)2 and BiVO4 the band gap is reduced by 0.9-1.0 eV through interactions of (a) the filled cation 6s orbitals with nonbonding O 2p states at the top of the valence band, and (b) overlap of empty 6p orbitals with antibonding V 3d-O 2p states at the bottom of the conduction band. In Ag3VO4 mixing between filled Ag 4d and O 2p states destabilizes states at the top of the valence band leading to a large decrease in the band gap (Eg=2.2 eV). In CeVO4 excitations from partially filled 4f orbitals into the conduction band lower the effective band gap to 1.8 eV. In the Ce1−xBixVO4 (0≤x≤0.5) and Ce1−xYxVO4 (x=0.1, 0.2) solid solutions the band gap narrows slightly when Bi3+ or Y3+ are introduced. The nonlinear response of the band gap to changes in composition is a result of the localized nature of the Ce 4f orbitals.  相似文献   

3.
The homoleptic complexes ZnII(4′‐(2‐(5‐R‐thienyl))‐terpyridine)2(ClO4)2 [R = hydrogen ( 1 ), bromo ( 2 ), methyl ( 3 ), and methoxy ( 4 )] were prepared. Their structures were determined by single‐crystal X‐ray diffraction analyses, and further characterized by high resolution mass, infrared spectra (IR), and elemental analyses. Single crystal X‐ray diffraction analysis showed that ZnII ions in the complexes are both six‐coordinate with N6 coordination sphere, displaying distorted octahedral arrangements. The absorption and emission spectra of the homoleptic ZnII complexes were investigated and compared to those of the parent complex ZnII(4′‐(2‐thienyl))‐terpyridine)2(ClO4)2. The UV/Vis absorption spectra showed that the complexes all exhibit strong absorption component in UV region, moreover, complex 4 has an absorption component in the visible region. Thus, the photocatalytic activities of the complexes in degradation of organic dyes were investigated under UV and visible irradiation.  相似文献   

4.
The Cadmiumapatites Cd5(PO4)3OH und Cd5(PO4)3F as well as the yet unknown iodoapatite Cd5(VO4)3I were synthesized and investigated by X-ray powder and single crystal methods. All single crystal diagrams exhibit hexagonal symmetry. The iodine compound has such a low c constant (about 6.5 Å) that is seems essential to discuss the halide positions in the structure. The reflexions of Cd5(PO4)3F show splitting which is indicative of a triclinic distortion of the apatite structure and of twinning. At about 150–350°C the deformation disappears reversibly. Cd5(AsO4)3F, Cd5(VO4)3F and the corresponding OH-compounds could not be prepared, but the new isotypic compounds Cd2XO4F (X = P, As, V) were synthesized by thermal and hydrothermal reactions. Single crystal investigations and the morphology of Cd2PO4F proved the space group C2/c. There are structural relations to the minerals of the wagnerite group. In connexion with the synthesis of Cd2XO4F a discussion of the relative stabilities of different apatites is given.  相似文献   

5.
The synthesis, structure, optical and photocatalytic studies of a family of compounds with the general formula, BiMXO5; M=Mg, Cd, Ni, Co, Pb, Ca and X=V, P is presented. The compounds were prepared by regular solid‐state reaction of constituents in the temperature range of 720–810 °C for 24 h. The compounds were characterized by powder X‐ray diffraction (PXRD) methods. The Rietveld refinement of the PXRD patterns have been carried out to establish the structure. The optical absorption spectra along with the colors in daylight have been explained employing the allowed d‐d transition. In addition, the observed colors of some of the V5+ containing compounds were explained using metal‐to‐metal charge transfer (MMCT) from the partially filled transition‐metal 3d orbitals to the empty 3d orbitals of V5+ ions. The near IR (NIR) reflectivity studies indicate that many compounds exhibit good NIR reflectivity, suggesting that these compounds can be employed as ‘cool pigments’. The experimentally determined band gaps of the prepared compounds were found to be suitable to exploit them for visible light activated photocatalysis. Photocatalytic C?C bond cleavage of alkenes and aerobic oxidation of alcohols were investigated employing visible light, which gave good yields and selectivity. The present study clearly demonstrated the versatility of the Paganoite family of compounds (BiMXO5) towards new colored inorganic materials, visible‐light photocatalysts and ‘cool pigments’.  相似文献   

6.
A 2D lead(II) coordination polymer [Pb2(phen)2(N3)3(ClO4)]n,( 1 ) containing 1,10‐phenanthroline (phen) and two different anions, has been synthesized and characterized by elemental analysis, IR and 1H NMR spectroscopy and X‐ray crystallography. The single‐crystal X‐ray data show two different kinds of Pb2+ ions with coordination numbers of eight, Pb1 = PbN6O2 and Pb2 = PbN8, with hemidirected and holodirected structures, respectively. The supramolecular features in 1 is negiotated through the weak but directional C‐H···O and C‐H···N interactions and aromatic π–π stacking interactions.  相似文献   

7.
A lead(II) complex with 2,3,5,6‐tetra(2‐pyridyl)pyrazine (TPPZ), nitrate, and perchlorate ligands has been synthesized and characterized by CHN elemental analysis and IR and 207Pb NMR spectroscopy. The single crystal X‐ray data of the [Pb2(μ‐TPPZ)2(NO3)2(ClO4)2] compound show that the complex is a one‐dimensional coordination polymer and that the Lead atom has a less‐common, ten‐coordinate holodirected geometry.  相似文献   

8.
2‐Amino‐3‐hydroxypyridinium dioxido(pyridine‐2,6‐dicarboxylato‐κ3O2,N,O6)vanadate(V), (C5H7N2O)[V(C7H3NO4)O2] or [H(amino‐3‐OH‐py)][VO2(dipic)], (I), was prepared by the reaction of VCl3 with dipicolinic acid (dipicH2) and 2‐amino‐3‐hydroxypyridine (amino‐3‐OH‐py) in water. The compound was characterized by elemental analysis, IR spectroscopy and X‐ray structure analysis, and consists of an anionic [VO2(dipic)] complex and an H(amino‐3‐OH‐py)+ counter‐cation. The VV ion is five‐coordinated by one O,N,O′‐tridentate dipic dianionic ligand and by two oxide ligands. Thermal decomposition of (I) in the presence of polyethylene glycol led to the formation of nanoparticles of V2O5. Powder X‐ray diffraction (PXRD) and scanning electron microscopy (SEM) were used to characterize the structure and morphology of the synthesized powder.  相似文献   

9.
The first silicon analogues of carbonic (carboxylic) esters, the silanoic thio‐, seleno‐, and tellurosilylesters 3 (Si?S), 4 (Si?Se), and 5 (Si?Te), were prepared and isolated in crystalline form in high yield. These thermally robust compounds are easily accessible by direct reaction of the stable siloxysilylene L(Si:)OSi(H)L′ 2 (L=HC(CMe)2[N(aryl)2], L′=CH[(C?CH2)‐CMe][N(aryl)]2; aryl=2,6‐iPr2C6H3) with the respective elemental chalcogen. The novel compounds were fully characterized by methods including multinuclear NMR spectroscopy and single‐crystal X‐ray diffraction analysis. Owing to intramolecular N→Si donor–acceptor support of the Si?X moieties (X=S, Se, Te), these compounds have a classical valence‐bond N+–Si–X? resonance betaine structure. At the same time, they also display a relatively strong nonclassical Si?X π‐bonding interaction between the chalcogen lone‐pair electrons (nπ donor orbitals) and two antibonding Si? N orbitals (σ*π acceptor orbitals mainly located at silicon), which was shown by IR and UV/Vis spectroscopy. Accordingly, the Si?X bonds in the chalcogenoesters are 7.4 ( 3 ), 6.7 ( 4 ), and 6.9 % ( 5 ) shorter than the corresponding Si? X single bonds and, thus, only a little longer than those in electronically less disturbed Si?X systems (“heavier” ketones).  相似文献   

10.
Pb9(PO 4)6/Ag3PO 4 photocatalysts with different amounts of Pb9(PO 4)6 were successfully synthesised by the ion exchange method. The catalysts were characterized by X‐ray diffractometry (XRD ), High‐resolution transmission electron microscopy (HRTEM ), X‐ray photoelectron spectroscopy (XPS ), Brunauer– Emmett–Teller (BET ), Fourier transform infrared spectrometry (FT ‐IS ), and ultraviolet‐visible (UV ‐vis) spectroscopy. All Pb9(PO 4)6/Ag3PO 4 photocatalysts show much higher photocatalytic activities than pure Ag3PO 4 under visible light irradiation in the methyl‐orange (MO ) decomposition. Especially, the 3.0 wt% Pb9(PO 4)6/Ag3PO 4 photocatalyst shows the highest photoactivity and also high stability after five cycles. The MO degradation rate during each cycle is almost maintained at 97%. Photo‐electrochemical measurement of photocatalysts verified that the enhancing photocatalytic activity was resulted from the electron‐hole pair high separation. The photocatalytic activity enhancement of Pb9(PO 4)6/Ag3PO 4 is closely related to , the main active oxygen species.  相似文献   

11.
Reduced Clusters with Remarkable Topological and Electronic Properties of the Type of [V18O42(X)]n? (X = SO4, VO4) with Td-Symmetry and Related Clusters [V(18—p)As2pO42(X)]m? (X = SO3, SO4, H2O; p = 3, 4) The novel cluster-compounds Na6[V18O42H9(VO4)] · 21 H2O, (NH4)8[V18O42(SO4)] · 25 H2O, K6[V15As6O42(H2O)] · 8 H2O, (NH4)6[V14As8O42(SO3)], (NH4)6[V14As8O42(SO4)] and [N(CH3)3]4[4V14As8042(H20)] were prepared and characterized by IR- and UV/Vis/NIR-spectroscopy, magnetic measurements and complete crystal structure analysis. For structural data see Inhaltsübersicht. Topological relations to the rhombicuboctahedron spanned by 24 0-atoms of the genuine hypothetical a-Keggin ion, at which the square planes are capped by V?O or As2O groups, are discussed. Of particular interest are the ?extended”? Keggin ions [V18O42(X)]n- (X = SO4 VO4), (formaly derived from the hypothetical genuine a-Keggin ion by addition of six V?O groups) which have quite different electron populations in spite of the same structure of their cluster shells.  相似文献   

12.
The 1:2 adduct lead(II) complexes with 1, 10‐phenanthroline (phen) containing three different anions, [Pb(phen)2(CH3COO)X] (X=NCS, NO3 and ClO4), have been synthesized and characterized by CHN elemental analysis, IR‐, 1H‐ and 13C NMR spectroscopy. The structure of [Pb(phen)2(CH3COO)(ClO4)] was determined by single crystal X‐ray analysis. The Pb atom of the monomeric complex is coordinated by four nitrogen atoms of two 1, 10‐phenanthroline ligands and two oxygen atoms of the acetate ligand to form an irregular octahedron. The arrangement of the 1, 10‐phenanthroline and acetate ligands, exhibits a coordination gap around the PbII ion, possibly occupied by a stereochemical electron active lone pair on lead(II), which results in a hemidirected lead compound. The π‐π stacking interaction between the parallel aromatic rings may help to increase the coordination ‘gap’ around the PbII ion.  相似文献   

13.
Three new carbonate halides, Cs3Pb2(CO3)3I, KBa2(CO3)2F and RbBa2(CO3)2F have been synthesized with hydrothermal and solid‐state methods. Cs3Pb2(CO3)3I is the first product in the lead carbonate iodides family; KBa2(CO3)2F and RbBa2(CO3)2F are the first two centrosymmetric compounds found in the alkaline–alkaline earth carbonate fluorides family. Cs3Pb2(CO3)3I crystallizes in a centrosymmetric space group C2/m, and exhibits a two‐ dimensional layered structure which is formed by [Cs4Pb4(CO3)6I2] double‐layers consisting of [Pb2(CO3)3I] single‐layers bridged by the Cs atoms. KBa2(CO3)2F and RbBa2(CO3)2F, which are isostructural, crystallize in a trigonal crystal system with a centric space group of R featuring a honeycomb‐like framework. First principle calculations indicate that Cs3Pb2(CO3)3I has a moderate birefringence and explain the difference between the band gaps of the title compounds from electron structures. The effects of cations and halogens on the structures and properties of the title compounds are also discussed.  相似文献   

14.
Replacing the Pb−X octahedral building unit of AIPbX3 perovskites (X=halide) with a pair of edge-sharing Pb−X octahedra affords the expanded perovskite analogs: AIIPb2X6. We report seven members of this new family of materials. In 3D hybrid perovskites, orbitals from the organic molecules do not participate in the band edges. In contrast, the more spacious inorganic sublattice of the expanded analogs accommodates larger pyrazinium-based cations with low-lying π* orbitals that form the conduction band, substantially decreasing the band gap of the expanded lattice. The molecular nature of the conduction band allows us to electronically dope the materials by reducing the organic molecules. By synthesizing derivatives with AII=pyridinium and ammonium, we can isolate the contributions of the pyrazinium-based orbitals in the band gap transition of AIIPb2X6. The organic-molecule-based conduction band and the inorganic-ion-based valence band provide an unusual electronic platform with localized states for electrons and more disperse bands for holes upon optical or thermal excitation.  相似文献   

15.
In order to know the relationship between structures and physicochemical properties of Group 12 metal(II) ions, the complexes with ‘simple’ ligands, such as alkyl cyclic diamine ligand and halide ions, were synthesized by the reaction of 1,4‐dimethylhomopiperazine (hp′) with MX2 as metal sources (M = Zn, Cd; X = Cl, Br, I). The five structural types, [ZnX2(hp′)] (X = Cl ( 1 ), Br ( 2 ) and I ( 3 )), [ZnX3(Hhp′)] (X = Cl ( 1′ ) and Br ( 2′ )), [CdCl2(hp′)]n ( 4 ), [{CdCl2(Hhp′)}2(µ‐Cl)2] ( 4′ ) and [{CdX(hp′)}2(µ‐X)2] (X = Br ( 5 ), I ( 6 )), were determined by X‐ray analysis. The sizes of both metal(II) and halide ions and the difference in each other's polarizability influence each structure. All complexes were characterized by IR, far‐IR, Raman and UV–Vis absorption spectroscopies. In the far‐IR and Raman spectra, the typical ν(M N) and ν(M X) peaks clearly depend on the five structural types around 540–410 cm−1 and 350–160 cm−1 respectively. The UV–Vis absorption band energy around 204–250 nm also reflects each structural type. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Compounds of composition Pb5(P x V1−x O4)3Cl (0 ≤ x ≤ 1), which are synthetic analogues of minerals pyromorphite, vanadinite, and endlichite, were synthesized for the first time by high-temperature solid-phase reactions. X-ray diffraction and IR spectroscopy were used to determine the structure of the compounds and revealed complete miscibility in the solid phase of the Pb5(PO4)3Cl-Pb5(VO4)3Cl binary system. Adiabatic reaction calorimetry was used to determine standard enthalpies of mixing and formation and showed that the regular solutions model is applicable to the Pb5(PO4)3Cl-Pb5(VO4)3Cl system. Differential thermal analysis in tandem with high-temperature X-ray diffraction was used to study the phase diagram and characterize phase transitions.  相似文献   

17.
Summaryof main observation and conclusion In order to extend the absorption spectrum of polyoxo-titanium clusters into the visible region,two new heterometal-oxo clusters Ti4CuII2CuI2(μ3-O)6(benzoate)10(MeCN)4(PTC-153)and Ti4CuII2CuI2(μ3-O)6(benzoate)8(CH3COO)2(MeCN)4(PTC-154)were success-fully synthesized.Single-crystal X-ray diffraction and X-ray photoelectron spectroscopy studies showed that these two heterometallic Ti4Cu4-oxo clusterspossessed Chinese knot-shape structure and mixed valence Cu^1+/2+ions.UV-visible spectroscopyanalysis demonstrated that the visible light region ab-sorption of PTC-153and PTC-154 could be significantly enhanced by doping copper.Furthermore,their visible-light driven photocurrent responses were studied by using samples of PTC-153and PTC-154as electrode precursors.  相似文献   

18.
Organolead compounds are of interest mainly as catalysts and organolead halides have proved to be very efficient materials for solar cells. Two organolead(IV) dimethylarsinates, namely catena‐poly[[triphenyllead(IV)]‐μ‐chlorido‐[triphenyllead(IV)]‐μ‐dimethylarsinato‐κ2O:O′], [Pb2(C6H5)6(C2H6AsO2)Cl]n or [(Ph3Pb)2Cl(O2AsMe2)], ( 1 ), and poly[chlorido(μ3‐dimethylarsinato‐κ3O:O,O′:O′)diphenyllead(IV)], [Pb(C6H5)2(C2H6AsO2)Cl]n or [(Ph2ClPb)(O2AsMe2)], ( 2 ), together with the triphenyllead(IV) diphenylphosphinate catena‐poly[[triphenyllead(IV)]‐μ‐diphenylphosphinato‐κ2O:O′], [Pb(C6H5)3(C12H10O2P)]n or [(Ph3Pb)(O2PPh2)], ( 3 ), have been synthesized and characterized by single‐crystal X‐ray diffraction, IR spectroscopy and mass spectrometry. In ( 1 ), a chain structure was found with alternating chloride and Pb—O—As—O—Pb arsinate bridges between five‐coordinate PbIV atoms. In ( 2 ), bidentate and chelate‐like bonded dimethylarsinate ligands form double chains with heptacoordinated PbIV atoms. In ( 3 ), a pentacoordinated PbIV atom is connected by Pb—O—P—O—Pb phosphinate bridges to form a linear chain. Obviously, the steric demand of the phenyl ligands at PbIV reduces the possibility of interconnections via polydentate ligands to one dimension only. Thus, no metal–organic frameworks (MOF) are formed but instead various chain structures are observed.  相似文献   

19.
A series of half‐sandwich ruthenium(II) arene complexes [(η6p‐cymene)RuII(R‐BzTSC)Cl]Cl 1 , 2 , 3 (BzTSC = benzaldehyde thiosemicarbazone and R = H, CH3 and C6H5) have been synthesized and characterized by IR, 1H NMR, UV‐visible, electrospray ionization mass spectrometry and elemental analysis. The single‐crystal structures of 1 and 3 have been determined. The molecular orbitals and electronic absorption spectra of the compounds have been calculated using the DFT and TDDFT methods. The in vitro antiproliferative activities of these complexes have been evaluated against four human cancer cell lines (CNE, H292, SKBR3 and Hey1‐B), and 3 is proved to be the most efficient inhibitor, with IC50 values of 20, 31, 10 and 34 μm , respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A new 3D hemidirected mixed‐ligand lead(II) coordination polymer with the ligand 1,2‐di(4‐pyridyl)ethane bpa) and the two metal coordinated anions nitrate and thiocyanate, [Pb2(bpa)2(SCN)3(NO3)]n ( 1 ), has been synthesized and characterized by CHN elemental analysis, IR‐, 1H‐ and 13C NMR spectroscopy. The single crystal X‐ray data of compound 1 show that the complex is a three‐dimensional coordination polymer with two different Pb atoms with stereoactive electron lone pairs and six‐ and five‐coordinate hemidirected geometries, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号