首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterned functionalization can, on the one hand, open the band gap of graphene and, on the other hand, program demanding designs on graphene. The functionalization technique is essential for graphene-based nanoarchitectures. A new and highly efficient method was applied to obtain patterned functionalization on graphene by mild fluorination with spatially arranged AgF arrays on the structured substrate. Scanning Raman spectroscopy (SRS) and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS) were used to characterize the functionalized materials. For the first time, chemical patterning on the bottom side of graphene was realized. The chemical nature of the patterned functionalization was determined to be the ditopic scenario with fluorine atoms occupying the bottom side and moieties, such as oxygen-containing groups or hydrogen atoms, binding on the top side, which provides information about the mechanism of the fluorination process. Our strategy can be conceptually extended to pattern other functionalities by using other reactants. Bottom-side patterned functionalization enables utilization of the top side of a material, thereby opening up the possibilities for applications in graphene-based devices.  相似文献   

2.
Patterned graphene‐functionalization with a tunable degree of functionalization can tailor the properties of graphene. Here, we present a new reductive functionalization approach combined with lithography rendering patterned graphene‐functionalization easily accessible. Two types of covalent patterning of graphene were prepared and their structures were unambiguously characterized by statistical Raman spectroscopy together with scanning electron microscopy/energy‐dispersive X‐ray spectroscopy (SEM‐EDS). The reversible defunctionalization processes, as revealed by temperature‐dependent Raman spectroscopy, enable the possibility to accurately modulate the degree of functionalization by annealing. This allows for the management of chemical information through complete write/store/erase cycles. Based on our strategy, controllable and efficient patterning graphene‐functionalization is no longer a challenge and facilitates the development of graphene‐based devices.  相似文献   

3.
The chemical functionalization of hydrogenated graphene can modify its physical properties and lead to better processability. Herein, we describe the chemical functionalization of hydrogenated graphene through a dehydrogenative cross‐coupling reaction between an allylic C?H bond and the α‐C?H bond of tetrahydrothiophen‐3‐one using Cu(OTf)2 as the catalyst and DDQ as the oxidant. The chemical functionalization was confirmed by X‐ray photoelectron spectroscopy and Fourier transform infrared spectroscopy and visualized by scanning electron microscopy. The functionalized hydrogenated graphene material demonstrated improved dispersion stability in water, bringing new quality to the elusive hydrogenated graphene (graphane) materials. Hydrogenated graphene provides broad possibilities for chemical modifications owing to its reactivity.  相似文献   

4.
The Raman spectra of two‐layered graphene on a silicon substrate were studied in the temperature range from 298 to 1073 K in an inert atmosphere. Isotopic engineering was used to fabricate two‐layer graphene specimens containing 13C atoms in the top layer and 12C atoms in the bottom layer, which allowed the behavior of each particular layer to be distinguished as a function of temperature. It is demonstrated that the top layer exhibits much lower Raman temperature coefficients than the bottom one for both the G and the G′ modes. We suggest that the changes in the Raman spectra of graphene observed during thermal cycling are predominantly caused by a superposition of two effects, namely, the mechanical stress in graphene exerted by the substrate and the intrinsic changes in the graphene lattice caused by the temperature itself. The top graphene layer is proposed to be more relaxed than the bottom graphene layer and thus reflects almost exclusively the temperature variations as a freestanding graphene layer would.  相似文献   

5.
Graphene is the best‐studied 2D material available. However, its production is still challenging and the quality depends on the preparation procedure. Now, more than a decade after the outstanding experiments conducted on graphene, the most successful wet‐chemical approach to graphene and functionalized graphene is based on the oxidation of graphite. Graphene oxide has been known for more than a century; however, the structure bears variable large amounts of lattice defects that render the development of a controlled chemistry impossible. The controlled oxo‐functionalization of graphene avoids the formation of defects within the σ‐framework of carbon atoms, making the synthesis of specific molecular architectures possible. The scope of this review is to introduce the field of oxo‐functionalizing graphene. In particular, the differences between GO and oxo‐functionalized graphene are described in detail. Moreover analytical methods that allow determining lattice defects and functional groups are introduced followed by summarizing the current state of controlled oxo‐functionalization of graphene.  相似文献   

6.
Fluorination of graphene opens up a bandgap, which creates opportunities for optoelectronics, and also paves the way for the creation of extremely thin insulating layers, which can be important for applications in devices. However, in spite of many interesting features offered by, for example, unequally doped layers in multilayered systems, most of the work has concerned the fluorination of graphene monolayers. Here, the fluorination process of graphene bilayers is investigated through high‐resolution Raman mapping followed by analysis of more than 10 000 spectra of bilayer graphene. Isotopically labeled bilayers are used, allowing each individual layer in bilayer graphene to be addressed unambiguously. The fluorinated graphene is prepared through exposure to XeF2. Monolayer graphene is found to be significantly more sensitive to fluorination than bilayer graphene. Through comparison of the D/G area ratio and the position of the G band for turbostratic and Bernal stacked (AB) bilayers, it is found that the fluorination process is more effective for turbostratic than for AB‐stacked bilayer graphene. The fluorination changes the electronic structure similarly for the top and bottom layers in turbostratic bilayers. However, the top layer is more sensitive than the bottom layer in AB‐stacked bilayers.  相似文献   

7.
The treatment of a suspension of graphite oxide (GO) with sodium azide leads to a material that, after reduction, features amino groups at the top and bottom of the sheets. These groups react through microcontact printing with an isothiocyanate monolayer on a silicon oxide substrate to form covalent bonds that strongly attach to the particles on the surface. With ultrasonication it is possible to obtain exfoliation of the sheets that are not covalently bound to the surface leaving single‐layer platelets attached to the substrate. The azido derivative can be also used to functionalize the graphene oxide with long alkylic chains through a click chemistry approach. This functionalization results in the exfoliation of this material in dimethylformamide. The novel materials were fully characterized by different techniques including IR spectroscopy, thermogravimetric analysis (TGA), scanning and transmission electron microscopy (SEM and TEM), X‐Ray photoelectron spectroscopy (XPS), and solid state NMR spectroscopy. The material with amino groups, after the reduction step, is conductive with a resistivity only approximately seven times larger than that of unprocessed graphite. This implies that after reduction of the GO, the conjugated sp2 network is largely restored. We consider this to be an important step towards a chemical approach for forming conducting large‐area platelet films of single‐layer graphene.  相似文献   

8.
The development of versatile functionalization concepts for graphene is currently in the focus of research. Upon oxo‐functionalization of graphite, the full surface of graphene becomes accessible for C?C bond formation to introduce out‐of‐plane functionality. Herein, we present the arylation of graphene with arylazocarboxylic tert‐butyl esters, which generates aryl radicals after activation with an acid. Surprisingly, the degree of functionalization is related to the concentration of lattice vacancy defects in the graphene material. Consequently, graphene materials that are free from lattice defects are not reactive. The reaction can be applied to graphene dispersed in solvents and leads to bitopic functionalization as well as monotopic functionalization when the graphene is deposited on surfaces. As the arylazocarboxylic tert‐butyl ester moiety can be attached to various molecules, the presented method paves the way to functional graphene derivatives, with the density of defects determining the degree of functionalization.  相似文献   

9.
A general strategy for simultaneously generating surface‐based supramolecular architectures on flat sp2‐hybridized carbon supports and independently exposing on demand off‐plane functionality with controlled lateral order is highly desirable for the noncovalent functionalization of graphene. Here, we address this issue by providing a versatile molecular platform based on a library of new 3D Janus tectons that form surface‐confined supramolecular adlayers in which it is possible to simultaneously steer the 2D self‐assembly on flat C(sp2)‐based substrates and tailor the external interface above the substrate by exposure to a wide variety of small terminal chemical groups and functional moieties. This approach is validated throughout by scanning tunneling microscopy (STM) at the liquid–solid interface and molecular mechanics modeling studies. The successful self‐assembly on graphene, together with the possibility to transfer the graphene monolayer onto various substrates, should considerably extend the application of our functionalization strategy.  相似文献   

10.
The concise synthesis of sulfur‐enriched graphene for battery applications is reported. The direct treatment of graphene oxide (GO) with the commercially available Lawesson's reagent produced sulfur‐enriched‐reduced GO (S‐rGO). Various techniques, such as X‐ray photoelectron spectroscopy (XPS), confirmed the occurrence of both sulfur functionalization and GO reduction. Also fabricated was a nanohybrid material by using S‐rGO with polyoxometalate (POM) as a cathode‐active material for a rechargeable battery. Transmission electron microscopy (TEM) revealed that POM clusters were individually immobilized on the S‐rGO surface. This battery, based on a POM/S‐rGO complex, exhibited greater cycling stability for the charge‐discharge process than a battery with nanohybrid materials positioned between the POM and nonenriched rGO. These results demonstrate that the use of sulfur‐containing groups on a graphene surface can be extended to applications such as the catalysis of electrochemical reactions and electrodes in other battery systems.  相似文献   

11.
Nuclear magnetic resonance (NMR) spectroscopy is an important molecular characterisation method that may aid the synthesis and production of graphenes, especially the molecular‐scale graphene nanoislands that have gathered significant attention due to their potential electronic and optical applications. Herein, carbon‐13 NMR chemical shifts were calculated using density functional theory methods for finite, increasing‐size fragments of graphene, hydrogenated graphene (graphane) and fluorinated graphene (fluorographene). Both concentric hexagon‐shaped (zigzag boundary) and crenellated (armchair) fragments were investigated to gain information on the effect of different types of flake boundaries. Convergence trends of the 13C chemical shift with respect to increasing fragment size and the boundary effects were found and rationalised in terms of low‐lying electronically excited states. The results predict characteristic behaviour in the 13C NMR spectra. Particular attention was paid to the features of the signals arising from the central carbon atoms of the fragments, for graphene and crenellated graphene on the one hand and graphane and fluorographene on the other hand, to aid the interpretation of the overall spectral characteristics. In graphene, the central nuclei become more shielded as the system size increases whereas the opposite behaviour is observed for graphane and fluorographene. The 13C signals from some of the perimeter nuclei of the crenellated fragments obtain smaller and larger chemical shift values than central nuclei for graphene and graphane/fluorographene, respectively. The diameter of the graphenic quantum dots with zigzag boundary correlates well with the predicted carbon‐13 chemical shift range, thus enabling estimation of the size of the system by NMR spectroscopy. The results provide data of predictive quality for future NMR analysis of the graphene nanoflake materials.  相似文献   

12.
Biodegradability of graphene is one of the fundamental parameters determining the fate of this material in vivo. Two types of aqueous dispersible graphene, corresponding to single‐layer (SLG) and few‐layer graphene (FLG), devoid of either chemical functionalization or stabilizing surfactants, were subjected to biodegradation by human myeloperoxidase (hMPO) mediated catalysis. Graphene biodegradation was also studied in the presence of activated, degranulating human neutrophils. The degradation of both FLG and SLG sheets was confirmed by Raman spectroscopy and electron microscopy analyses, leading to the conclusion that highly dispersed pristine graphene is not biopersistent.  相似文献   

13.
A very facile and efficient protocol for the covalent patterning and properties tuning of graphene is reported. Highly reactive fluorine radicals were added to confined regions of graphene directed by laser writing on graphene coated with 1-fluoro-3,3-dimethylbenziodoxole. This process allows for the realization of exquisite patterns on graphene with resolutions down to 200 nm. The degree of functionalization, ranging from the unfunctionalized graphene to extremely high functionalized graphene, can be precisely tuned by controlling the laser irradiation time. Subsequent substitution of the initially patterned fluorine atoms afforded an unprecedented graphene nanostructure bearing thiophene groups. This substitution led to a complete switch of both the electronic structure and the polarization within the patterned graphene regions. This approach paves the way towards the precise modulation of the structure and properties of nanostructured graphene.  相似文献   

14.
Since the discovery of graphene many studies focused on its functionalization by different methods. These strategies aim to find new pathways to overcome the main drawback of graphene, a missing band-gap, which strongly reduces its potential applications, particularly in the domain of nanoelectronics, despite its huge and unequaled charge carrier mobility. The necessity to contact this material with a metal has motivated a lot of studies of metal/graphene interactions and has led to the discovery of the intercalation process very early in the history of graphene. Intercalation, where the deposited atoms do not stay at the graphene surface but intercalate between the top layer and the substrate, may happen at room temperature or be induced by annealing, depending of the chemical nature of the metal. This kind of mechanism was already well-known in the earlier Graphite Intercalation Compounds (GICs), particularly famous for one current application, the Lithium-ion Battery, which is simply an application based on the intercalation of Lithium atoms between two sheets of graphene in a graphite anode. Among numerous discoveries the GICs community also found a way to obtain graphite with superconducting properties by using intercalated alkali metals. Graphene is now a playground to “revisit” and understand all these mechanisms and to discover possible new properties of graphene induced by intercalation. For example, the intercalation process may be used to decouple the graphene layer from its substrate, to change its doping level or even, in a more general way, to modify its electronic band structure and the nature of its Dirac fermions. In this paper we will focus on the functionalization of graphene by using intercalation of metal atoms but also of molecules. We will give an overview of the induced modifications of the electronic band structure possibly leading to spin-orbit coupling, superconductivity, …We will see how this concept of functionalization is also now used in the framework of other 2D materials beyond graphene and of van der Waals heterostructures based on these materials.  相似文献   

15.
Despite recent progress in the production of large area, high quality graphene, the technological implementation of such sheets into real world devices still requires intense future research. A major obstacle is the development of efficient chemical methods for the patterned functionalization of graphene, in order to locally define regions with a band gap, without the simultaneous introduction of defects into the carbon framework. In this respect, it can be expected that much can be learned from the further developed chemistry of carbon nanotubes as the one‐dimensional counterparts of graphene. Comparatively closer to technological applications is the use of graphene in flexible, transparent electrodes, as component of (bio‐)chemical sensors, or as reinforcing filler in composite materials. However, most of these applications require the development of optimized protocols for the conversion of graphene oxide into pristine graphene. To this end, a great challenge is not only to quantitatively remove the oxygen‐containing functional groups, but also to heal the disorder in certain areas of the sp2‐hybridized honeycomb lattice.  相似文献   

16.
Covalent functionalization has proven an effective solution for graphene to realize its revolutionary potential in real applications, whereas the platform strategy (a reactive graphene‐based material acting as the platform to undergo post‐reactions for generation of various graphene‐derived materials) is an attractive option to execute efficiently such a task. This contribution demonstrates that 2‐(3,4‐dihydroxyphenyl) pyrrolidine (DHPP) grafted graphene, G‐OH, is a competent platform. Four typical but not exclusive graphene‐derived materials have been prepared from G‐OH by using the chemical virtue of each DHPP unit having three categories totaling six reactive sites. The controlled feature of 1,3‐dipolar cycloaddition for the synthesis of G‐OH ensures that the electronic structure and properties of pristine graphene are succeeded largely by G‐OH and thus its derivatives. A promising alternative to graphene oxide, which has been widely used as a platform to prepare the graphene‐derived materials but suffers from some intrinsic disadvantages, is thus developed.  相似文献   

17.
This work aims to investigate the influence of various electrode materials on the signal‐to‐noise ratio (SNR) of passive microelectrode arrays (MEAs) intended for use in neural interfaces. Noise reduction substantially improves the performance of systems which electrically interface with extracellular solutions. The MEAs are fabricated using gold, indium tin oxide (ITO), inkjet printed (IJP) graphene, and chemical vapor deposited (CVD) graphene. 3D‐printed Nylon reservoirs are adhered to glass substrates with identical MEA patterns and filled with neuronal cell culture media. To precisely control the electrode area and minimize the parasitic coupling of metal interconnects and solution, SU‐8 photoresist is patterned to expose only the area of the electrode to solution and cap the remainder of the sample. Voltage signals with varying amplitude and frequencies are applied to the solution using glass micropipettes, and the response is measured on an oscilloscope from a microprobe placed on the contact pad external to the reservoir. The time domain response signal is transformed into a frequency spectrum, and SNR is calculated. As the magnitude or the frequency of the input signal gets larger, a significantly increased signal‐to‐noise ratio was observed in CVD graphene MEAs compared to others. This result indicates that 2‐dimensional nanomaterials such as graphene can provide better signal integrity and potentially lead to improved performance in hybrid neural interface systems.  相似文献   

18.
《先进技术聚合物》2018,29(2):687-700
Despite the significant efforts in the synthesis of new polymers, the mechanical properties of polymer matrices can be considered modest in most cases, which limits their application in demanding areas. The isolation of graphene and evaluation of its outstanding properties, such as high thermal conductivity, superior mechanical properties, and high electronic transport, have attracted academic and industrial interest, and opened good perspectives for the integration of graphene as a filler in polymer matrices to form advanced multifunctional composites. Graphene‐based nanomaterials have prompted the development of flexible nanocomposites for emerging applications that require superior mechanical, thermal, electrical, optical, and chemical performance. These multifunctional nanocomposites may be tailored to synergistically combine the characteristics of both components if proper structural and interfacial organization is achieved. The investigations carried out in this aim have combined graphene with different polymers, leading to a variety of graphene‐based nanocomposites. The extensive research on graphene and its functionalization, as well as polymer graphene composites, aiming at applications in the biomedical field, are reviewed in this paper. An overview of the polymer matrices adequate for the biomedical area and the production techniques of graphene composites is presented. Finally, the applications of such nanocomposites in the biomedical field, particularly in drug delivery, wound healing, and biosensing, are discussed.  相似文献   

19.
We have performed quantum‐mechanical study of charge distribution on the carbon atoms of two‐dimensional conjugated system of the model graphene ribbon. The study shows that charges in the quasi‐two dimensional conjugated system of the graphene ribbon are not localized on separate carbon atoms, but form one‐dimensional solitonic charge waves along zig‐zag sides. There are two solitonic charge waves in the dication or dication due to generation of own soliton by each charge; the first soliton in the acene chain is located on one side while the second one is positioned on the opposite side. The shapes of the solitonic waves in the graphene ribbon are similar to ones in one‐dimensional conjugated systems. Similarly, in the ionic two‐dimensional collective systems of π‐electrons two splitted solitonic levels are generated; lengthening of the chain leads to convergence of the levels. The widening of graphene ribbon (y‐expansion of two‐dimensional conjugated system is accompanied with recession of both solitons to outer sides, so amplitudes of the solitons on the inner sides regularly decrease under widening of the model graphene ribbon; the charges on the inner carbon atoms converge to zero.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号