首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel-modified electrode has been developed, by electrodeposition of palladium nanoparticles (PdNps) on polypyroline film-coated (Poly(Pr)) graphite electrode. The modified electrode (PdNps/Poly(Pr)/GE) was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) techniques. SEM proved that the palladium nanoparticles were uniform distributed with an average particle diameter of 20–45 nm. A higher catalytic activity was obtained for curcumin oxidation using this new modified electrode (PdNps/Poly(Pr)/GE). The square wave voltammogram of curcumin in pH 2 phosphate buffer exhibited an anodic peak at 0.504 V. This oxidation peak current was found to be linearly related to curcumin concentrations in the ranges of 5.0?×?10?9 to 1.0?×?10?7 M with a detection limit of 1.2?×?10?9 M. This novel-modified electrode showed excellent sensitivity, compared with the existing reports about determination of curcumin.  相似文献   

2.
In this paper, an electrochemical sensor was prepared based on the modification of pencil graphite electrode (PGE) by hollow platinum nanoparticles/reduced graphene oxide (HPtNPs/rGO/PGE) for determination of ceftazidime (CFZ). Initially, rGO was electrodeposited on the electrode surface, and then, hollow platinum nanoparticles were placed on the electrode surface via galvanic displacement reaction of Pt(IV) ions with cobalt nanoparticles (CoNPs) that had electrodeposited on the electrode surface. Several significant parameters controlling the performance of the HPtNPs/rGO/PGE were examined and optimized using central composite design as one optimization methodology. The surface morphology and elemental characterization of the bare PGE, rGO/PGE, CoNPs/rGO/PGE, and HPtNPs/rGO/PGE-modified electrodes was analyzed by field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and electrochemical impedance spectroscopy. The electrochemical activity of CFZ on resulting modified electrode was investigated by cyclic voltammetry (CV) and adsorptive differential pulse voltammetry (AdDPV). Adsorptive differential pulse voltammetry indicates that peak current increases linearly with respect to increment in CFZ concentration. CFZ was determined in the linear dynamic range of 5.0 × 10?13 to 1.0 × 10?9 M, and the detection limit was determined as 2.2 × 10?13 M using AdDPV under optimized conditions. The results showed that modified electrode has high selectivity and very high sensitivity. The method was used to determine of CFZ in drug injection and plasma samples.  相似文献   

3.
A reliable and simple electrochemical method has been proposed for the simultaneous determination of paracetamol (PAR) and p‐aminophenol (PAP) in pharmaceutical formulations. The oxidation and reduction peak potentials in cyclic voltammetry (CV) for PAR on carbon ionic liquid electrode (CILE) were occurred at 370 and 225 mV vs. Ag/AgCl, respectively at pH 7.0, while those for PAP on CILE appeared at 128 mV and 68 mV, respectively at the scan rate of 0.05 V s?1. In comparison to the conventional carbon paste electrode, the apparent reversibility and kinetics of the electrochemical reactions of PAR and PAP were significantly improved on CILE. In differential pulse voltammetric technique, the peak potentials for PAR and PAP appeared at 345 and 130 mV, respectively, with the peak separation of 215 mV, sufficient for their simultaneous determination in samples containing these two species. The proposed method was used for simultaneous determination of PAR and PAP in tablets. PAR and PAP can be determined in the ranges of 2.0×10?6–2.2×10?3 M and 3.0×10?7–1.0×10?3 M, with the detection limits of 5.0×10?7 and 1.0×10?7 M (calculated by 3σ), respectively. The relative standard deviations for the determination of PAR and PAP were less than 2%.  相似文献   

4.
A voltammetric sensor for sensitive and specific determination of trans‐resveratrol (RES) were prepared based on immobilization of an RES‐imprinted film on the surface of functionalized Indium Tin Oxide (ITO) electrode, which was modified with γ‐methacyloxypropyl trimethoxysilane (γ‐MPS). Cyclic Voltammetry (CV) was presented to extract RES from the molecularly imprinted polymer film and RES were extracted rapidly and completely. The binding performance of the imprinted electrode with the template RES were investigated using differential pulse voltammetry (DPV). The results showed that the imprinted ITO film can give selective recognition to the template RES over that of structurally analogous molecules. A linear response to RES in the concentration range of 2.0×10?6 M to 2.0×10?5 M was observed with a correlation coefficient of 0.992, and the detection limit of the electrochemical sensor was 8.0×10?7 M. Whereas, binding to the reference nonimprinted electrode, made in the same way but without the addition of template RES, there was almost no response to RES.  相似文献   

5.
Solid-phase nanoextraction is a sample preparation technique, which combines nanotechnology with analytical chemistry, and brings analytical chemistry to a higher level, particularly for complex system analysis. This paper describes a typical example of electrochemical solid-phase nanoextraction and electrochemical detection. Trace amounts of copper (5.0?×?10?13?mol/L) were extracted by electrochemical solid-phase nanoextraction on to the magnesium oxinate nanoparticle-modified carbon paste electrode surface in a pH?7.2 phosphate buffer system at ?0.50 V for 100 s. The extraction is achieved by the cation exchange between copper(II) in the aqueous solution and magnesium(II) from the magnesium oxinate nanoparticles on the electrode surface. The extracted copper shows an irreversible anodic peak at about 0.2 V (vs. saturated calomel electrode). The peak current is proportional to the scan rate, which shows this to be a surface-controlled process. The oxidation peak current is proportional to the logarithm of the copper concentration in the range 5.0?×?10?13?~?5.0?×?10?7?M with a slope of 2.215. This powerful method uses the carbon paste electrode to combine extraction with electrochemical analysis.  相似文献   

6.
In this paper, a silver doped poly(L ‐valine) (Ag‐PLV) modified glassy carbon electrode (GCE) was fabricated through electrochemical immobilization and was used to electrochemically detect uric acid (UA), dopamine (DA) and ascorbic acid (AA) by linear sweep voltammetry. In pH 4.0 PBS, at a scan rate of 100 mV/s, the modified electrode gave three separated oxidation peaks at 591 mV, 399 mV and 161 mV for UA, DA and AA, respectively. The peak potential differences were 238 mV and 192 mV. The electrochemical behaviors of them at the modified electrode were explored in detail with cyclic voltammetry. Under the optimum conditions, the linear ranges were 3.0×10?7 to 1.0×10?5 M for UA, 5.0×10?7 to 1.0×10?5 M for DA and 1.0×10?5 to 1.0×10?3 M for AA, respectively. The method was successfully applied for simultaneous determination of UA, DA and AA in human urine samples.  相似文献   

7.
The electrochemical behavior of D ‐penicillamine (D ‐PA) studied at the surface of ferrocene carboxylic acid modified carbon paste electrode (FCAMCPE) in aqueous media using cyclic voltammetry and double step potential chronoamperometry. It has been found that under optimum condition (pH 7.00), the oxidation of D ‐PA at surface of such an electrode is occurred about 420 mV less positive than that an unmodified carbon paste electrode (CPE). The catalytic oxidation peak current was linearly dependent on the D ‐PA concentration and a linear calibration curve was obtained in the ranges 7.5×10?5 M – 1.0×10?3 M and 6.5×10?6 M?1.0×10?4 M of D ‐PA with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods respectively. The detection limits (3σ) were determined as 6.04×10?5 M and 6.15×10?6 M. This method was also used for the determination of D ‐PA in pharmaceutical preparation (capsules) by standard addition method.  相似文献   

8.
A modified electrode was fabricated by electrochemically deposition of Pt nanoparticles on the multiwall carbon nanotube covered glassy carbon electrode (Pt nanoparticles decorated MWCNT/GCE). A higher catalytic activity was obtained to electrocatalytic oxidation of ascorbic acid, dopamine, and uric acid due to the enhanced peak current and well‐defined peak separations compared with both, bare and MWCNT/GCE. The electrode surfaces were characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS). Individual and simultaneous determination of AA, DA, and UA were studied by differential pulse voltammetry. The detection limits were individually calculated for ascorbic acid, dopamine, and uric acid as being 1.9×10?5 M, 2.78×10?8 M, and 3.2×10?8 M, respectively. In simultaneous determination, LODs were calculated for AA, DA, and UA, as of 2×10?5 M, 4.83×10?8 M, and 3.5×10?7 M, respectively.  相似文献   

9.
The electrochemical properties of hydrazine studied at the surface of a carbon paste electrode spiked with p‐bromanil (tetrabromo‐p‐benzoquinone) using cyclic voltammetry (CV), double potential‐step chronoamperometry and differential pulse voltammetry (DPV) in aqueous media. The results show this quinone derivative modified carbon paste electrode, can catalyze the hydrazine oxidation in an aqueous buffered solution. It has been found that under the optimum conditions (pH 10.00), the oxidation of hydrazine at the surface of this carbon paste modified electrode occurs at a potential of about 550 mV less positive than that of a bar carbon paste electrode. The electrocatalytic oxidation peak current of hydrazine showed a linear dependent on the hydrazine concentrations and linear analytical curves were obtained in the ranges of 6.00×10?5 M–8.00×10?3 M and 7.00×10?6 M–8.00×10?4 M of hydrazine concentration with CV and differential pulse voltammetry (DPV) methods, respectively. The detection limits (3σ) were determined as 3.6×10?5 M and 5.2×10?6 M by CV and DPV methods. This method was also used for the determination of hydrazine in the real sample (waste water of the Mazandaran wood and paper factory) by standard addition method.  相似文献   

10.
A slow reaction process has been successfully used to synthesize Prussian blue/single‐walled carbon nanotubes (PB/SWNTs) nanocomposites. Electrochemical and surface characterization by cyclic voltammetry (CV), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV‐vis absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD) confirmed the presence of PB nanocrystallites on SWNTs. PB/SWNTs modified glassy carbon electrode (GCE) exhibits efficient electron transfer ability and high electrochemical response towards hydrazine. The fabricated hydrazine sensor showed a wide linear range of 2.0×10?6–6.0×10?3 M with a response time less than 4 s and a detection limit of 0.5 μM. PB/SWNTs modified electrochemical sensors are promising candidates for cost‐effective in the hydrazine assays.  相似文献   

11.
A nickel hydroxide-modified nickel electrode (Ni(OH)2/Ni) was successfully prepared by the cyclic voltammetry (CV) method and the electrocatalytic properties of the electrode for formaldehyde and methanol oxidation have been investigated respectively. The Ni(OH)2/Ni electrode exhibits high electrocatalytic activity in the reaction. A new method has been developed for formaldehyde determination at the nickel hydroxide-modified nickel electrode and the experimental parameters were optimized. The oxidation peak current is linearly proportional to the concentration of formaldehyde in the range of 7.0 × 10?5 to 1.6 × 10?2 M with a detection limit of 2.0 × 10?5 M. Recoveries of artificial samples are between 93.3 and 103.5%. The effect of scan rate and methanol concentration on the electrochemical behavior of methanol were investigated respectively.  相似文献   

12.
A novel ion implantation sensor (DNA/COOH/ITO) based on DNA immobilization in COOH/ITO probe was manufactured for the first time. The surface morphologies of the electrodes were characterized by X‐ray photoelectron spectroscopy (XPS), field‐emission‐scanning electron microscopy (FSEM) and electrochemical methods. In a 0.5 mol/L PBS solution, a sensitive oxidation peak of DNA on the COOH/ITO electrode was obtained by voltammetry. The electrochemical behavior of DNA was studied. And the oxidative peak potential of DNA was +0.400 V (vs. Ag/AgCl). Its peak current was proportional to the concentration of DNA over the range of 1.0×10?8?1.0×10?6 mol/L with a detection limit of 5.0×10?9 mol/L (about 0.5 ng/mL). This sensor was applied to the direct detection of DNA samples.  相似文献   

13.
The electrochemical behavior of dopamine (DA) at a MWNTs-modified glassy carbon electrode was investigated by cyclic voltammetry (CV), square wave voltammetry (SWV). The MWNTs modified electrode exhibited marked promotion of the electrochemical reaction of DA in different environments. Under optimum conditions, the peak currents of SWV of DA were increased linearly with incremental concentration of DA in the range from 5 × 10?7 to 1 × 10?5 mol L?1. The limit of detection is 3 × 10?7 mol L?1.  相似文献   

14.
《Electroanalysis》2005,17(22):2043-2051
The electrochemical behavior of L ‐cysteine studied at the surface of ferrocenecarboxylic acid modified carbon paste electrode (FCMCPE) in aqueous media using cyclic voltammetry and double step potential chronoamperometry. It has been found that under optimum condition (pH 7.00) in cyclic voltammetry, the oxidation of L ‐cysteine is occurs at a potential about 580 mV less positive than that an unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α and catalytic reaction rate constant, Kh were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of L ‐cysteine showed a linear dependent on the L ‐cysteine concentration and linear calibration curves were obtained in the ranges of 10?5 M–10?3 M and 4.1×10?8 M–3.7×10?5 M of L ‐cysteine concentration with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods respectively. The detection limits (2δ) were determined as 2.4×10?6 M and 2.5×10?8 M by CV and DPV methods. This method was also examined for determination of L ‐cysteine in some samples, such as Soya protein powder, serum of human blood by using recovery and standard addition methods.  相似文献   

15.
In this article, we present a simple and efficient method to synthesize a magnetic NiFe2O4 nanocatalyst under hydrothermal conditions. Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X‐ray spectroscopy (EDX) analyses confirmed the synthesis of NiFe2O4 nanoparticles. These nanoparticles showed satisfactory catalytic activity for determination of norepinephrine (NE) in the presence of folic acid (FA) using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods. Differential pulse voltammetry peak currents of NE increased linearly with their concentrations in the range of 1.0 × 10?7–5.0 × 10?4 M, and the detection limit for NE was 2.3 × 10?8 M, respectively. The modified electrode displayed strong function for resolving the overlapping voltammetric responses of NE and FA into two well‐defined voltammetric peaks. In the mixture containing NE and FA, the two compounds can well separate from each other with a potential difference of 510 mV between NE and FA, which was large enough to determine NE and FA individually and simultaneously. Additionally, the prepared electrochemical sensor demonstrated a practical feasibility for real sample determination.  相似文献   

16.
《Electroanalysis》2006,18(17):1722-1726
The electrochemical properties of L ‐cysteic acid studied at the surface of p‐bromanil (tetrabromo‐p‐benzoquinone) modified carbon paste electrode (BMCPE) in aqueous media by cyclic voltammetry (CV) and double step potential chronoamperometry. It has been found that under optimum condition (pH 7.00) in cyclic voltammetry, the oxidation of L ‐cysteic acid at the surface of BMCPE occurs at a half‐wave potential of p‐bromanil redox system (e.g., 100 mV vs. Ag|AgCl|KClsat), whereas, L ‐cysteic acid was electroinactive in the testing potential ranges at the surface of bare carbon paste electrode. The apparent diffusion coefficient of spiked p‐bromanil in paraffin oil was also determined by using the Cottrell equation. The electrocatalytic oxidation peak current of L ‐cysteic acid exhibits a linear dependency to its concentration in the ranges of 8.00×10?6 M–6.00×10?3 M and 5.2×10?7 M–1.0×10?5 M using CV and differential pulse voltammetry (DPV) methods, respectively. The detection limits (2σ) were determined as 5.00×10?6 M and 4.00×10?7 M by CV and DPV methods. This method was used as a new, selective, rapid, simple, precise and suitable voltammetric method for determination of L ‐cysteic acid in serum of patient's blood with migraine disease.  相似文献   

17.
The electrochemical behavior of salvianic acid A sodium (SAS), a main active content in Chinese herbal medicine (CHM), was studied for the first time by cyclic voltammetry (CV). A new electroanalytical method of SAS was erected using differential pulse voltammetric (DPV) technique. In pH 3.3 britton‐robinson (B‐R) buffer solution, the medicine showed a pair of redox peaks driven by adsorption. The electrode process involved two electrons and two protons transformation with apparent rate constant (ks) of 2.85 s?1 and transfer coefficient (α) of 0.81. Based on understanding the electrochemical process of SAS at the glassy carbon electrode (GCE), analysis of SAS can be realized. The oxidation peak currents showed linear with the concentrations of SAS in the range of 5.45 × 10?8 to 1.09 × 10?5 M. The limit of detection was 5.45 × 10?8 M. The proposed method has high sensitivity, wide linear range, and was successfully applied to quantitative determination of the SAS in Rukuaixiao Tablets.  相似文献   

18.
In this paper, a simple, convenient and sensitive electrochemical method has been developed for the determination of C.I. Direct Red 80. A gold nanoparticle modified carbon paste electrode was fabricated and used for study and sensitive determination of Direct Red 80 by cyclic voltammetry and differential pulse voltammetry. The overall analysis involved a two-step procedure: an accumulation step under open-circuit conditions, followed by voltammetric measurements of Direct Red 80 in a 0.1?M phosphate buffer solution at pH?=?3.0. The experimental conditions, such as the medium, pH and accumulation time, were optimised. The oxidation peak current was proportional to the concentration of Direct Red 80 from 5.0?×?10?8 to 5.0?×?10?7?M and 5.0?×?10?7 to 3.0?×?10?6?M, and the detection limit was 1.15?×?10?8?M (S/N?=?3). The proposed method was used to detect Direct Red 80 in natural water and sewage with good accuracy.  相似文献   

19.
A novel MCM/ZrO2 nanoparticles modified carbon paste electrode (MZ-CPE) was fabricated and used to study the electro oxidation of epinephrine (EP) and acetaminophen (AC) and their mixtures by electrochemical methods. The modified electrode showed electrocatalytic activity toward EP and AC oxidation with a decrease of the overpotential by 173 mV to a less positive potential for EP at the surface of the MZ-CPE and an increase in peak current at pH 7.0. Differential pulse voltammetry peak currents of EP and AC increased linearly with their concentrations in the ranges of 1.0 × 10?6–2.5 × 10?3 and 1.0 × 10?6–2.0 × 10?3 M, respectively, and the detection limits for EP and AC were 5.0 × 10?7 and 4.5 × 10?7 M, respectively.  相似文献   

20.
We report on a novel electrochemical method to detect trace pentachlorophenol (PCP) by using a chitosan (CS) modified carbon paste electrode (CS/CPE). Compared with that at a bare carbon paste electrode (CPE), the current response was greatly improved at the CS/CPE due to the enhancement effect of CS. Under optimal working conditions, the oxidation peak current of PCP was proportional to its concentration in the range of 1.0 × 10?7 to 5.0 × 10?6 and 5.0 × 10?6 to 1.0 × 10?4 mol/L, with an extremely low detection limit of 4.0 × 10?8 mol/L. Our method was successfully used to detect the PCP concentration in vegetable samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号