首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
We report a new molecular‐design principle for creating double‐gyroid nanostructured molecular assemblies based on atropisomerization. Ionic amphiphiles containing two imidazolium rings close to each other were designed and synthesized. NMR data revealed that the rotation of the imidazolium rings is restricted, with an activation energy as high as 63 kJ mol?1 in DMSO‐d6 solution (DFT prediction for a model compound in the vacuum: 90–100 kJ mol?1). Due to the restricted rotation, the amphiphiles feature “double” atropisomeric axes in their ionic segments and form three stable atropisomers: meso, R, and S. These isomers co‐organize into ‐type bicontinuous cubic liquid‐crystalline mesophases through nanosegregation of the ionic and non‐ionic parts. Considering the intrinsic characteristic of ‐type bicontinuous cubic structures that they are composed of intertwined right‐ and left‐handed single gyroids, we propose that the simultaneous presence of both R‐ and S‐atropisomers is an important contributor to the formation of double‐gyroid structures.  相似文献   

2.
It was discovered that phosphazenyl phosphines (PAPs) can be stronger P‐superbases than the corresponding Schwesinger type phosphazene N‐superbases. A simple synthetic access to this class of PR3 derivatives including their homologization is described. XRD structures, proton affinities (PA), and gas‐phase basicities (GB) as well as calculated and experimental pK values in THF are presented. In contrast to their N‐basic counterparts, PAPs are also privileged ligands in transition metal chemistry. In fact, they are currently the strongest uncharged P‐donors known, exceeding classical and more recently discovered ligands such as PtBu3 and imidazolin‐2‐ylidenaminophosphines (IAPs) with respect to their low Tolman electronic parameters (TEPs) and large cone angles.  相似文献   

3.
Polymeric [Bi]? in KBi?NH3 has planar zigzag chains with two‐connected Bi atoms and metallic properties, whereas KBi, which has helical chains of Bi atoms, is semiconducting. The isomerization of the Bi chain is induced by solvate molecules. In the novel layered solvate structure uncharged [KBi] layers are separated by intercalated NH3 molecules. These layers are a structural excerpt of the iso(valence)electronic CaSi, whose metallic properties arise from the planarity of the zigzag chain of Si atoms. Computational studies support this view, they show an anisotropic metallic behavior along the Bi chain. Electron delocalization is also found in the new cyclic anion [Bi6]4? isolated in K2[K(18‐crown‐6)]2[Bi6]?9 NH3. Although [Bi6]4? should exhibit one localized double bond, electron delocalization is observed in analogy to the lighter homologues [P6]4? and [As6]4?. Both compounds were characterized by single‐crystal X‐ray structure determination.  相似文献   

4.
Reduction of the uranium(III) metallocene [(η5‐C5iPr5)2UI] ( 1 ) with potassium graphite produces the “second‐generation” uranocene [(η5‐C5iPr5)2U] ( 2 ), which contains uranium in the formal divalent oxidation state. The geometry of 2 is that of a perfectly linear bis(cyclopentadienyl) sandwich complex, with the ground‐state valence electron configuration of uranium(II) revealed by electronic spectroscopy and density functional theory to be 5f3 6d1. Appreciable covalent contributions to the metal‐ligand bonds were determined from a computational study of 2 , including participation from the uranium 5f and 6d orbitals. Whereas three unpaired electrons in 2 occupy orbitals with essentially pure 5f character, the fourth electron resides in an orbital defined by strong 7s‐6d mixing.  相似文献   

5.
Attempted preparation of a chelated CoII β‐silylamide resulted in the unprecedented disproportionation to Co0 and a spirocyclic cobalt(IV) bis(β‐silyldiamide): [Co[(NtBu)2SiMe2]2] ( 1 ). Compound 1 exhibited a room‐temperature magnetic moment of 1.8 B.M. and a solid‐state axial EPR spectrum diagnostic of a rare S= configuration for tetrahedral CoIV. Ab initio semicanonical coupled‐cluster calculations (DLPNO‐CCSD(T)) revealed the doublet state was clearly preferred (?27 kcal mol?1) over higher spin configurations only for the bulky tert‐butyl‐substituted analogue. Unlike other CoIV complexes, 1 had remarkable thermal stability, and was demonstrated to form a stable self‐limiting monolayer in preliminary atomic layer deposition (ALD) surface saturation experiments. The ease of synthesis and high stability make 1 an attractive starting point to investigate otherwise inaccessible CoIV intermediates and for synthesizing new materials.  相似文献   

6.
A copper complex of a heterocorrole analogue with an N–N linkage, 1,19‐diaza‐21,24‐dicarbadibenzocorrole ( Cu‐5 ), was successfully synthesized via oxidative metalation–cyclization of a tetrapyrrolic precursor. The N–N linkage in the skeleton of Cu‐5 , which serves as a mediator of π‐electron delocalization, features an 18π aromatic system. The electronic structure of Cu‐5 is best described as a ground‐state singlet species stabilized by the distinct NNCC coordination core. This finding shows how the ligand's design can be used to modulate the Cu orbital energy, thereby making such compounds invaluable for copper‐based catalytic applications.  相似文献   

7.
We demonstrate that trimethylamine borane can exhibit desirable piezoelectric and pyroelectric properties. The material was shown to be able operate as a flexible film for both thermal sensing, thermal energy conversion and mechanical sensing with high open circuit voltages (>10 V). A piezoelectric coefficient of d33≈10–16 pC N?1, and pyroelectric coefficient of p≈25.8 μC m?2 K?1 were achieved after poling, with high pyroelectric figure of merits for sensing and harvesting, along with a relative permittivity of 6.3.  相似文献   

8.
Traditional MOF e-CRR, constructed from catalytic linkers, manifest a kinetic bottleneck during their multi-electron activation. Decoupling catalysis and charge transport can address such issues. Here, we build two MOF/e-CRR systems, CoPc@NU-1000 and TPP(Co)@NU-1000, by installing cobalt metalated phthalocyanine and tetraphenylporphyrin electrocatalysts within the redox active NU-1000 MOF. For CoPc@NU-1000, the e-CRR responsive CoI/0 potential is close to that of NU-1000 reduction compared to the TPP(Co)@NU-1000. Efficient charge delivery, defined by a higher diffusion (Dhop=4.1×10−12 cm2 s−1) and low charge-transport resistance ( =59.5 Ω) in CoPC@NU-1000 led FECO=80 %. In contrast, TPP(Co)@NU-1000 fared a poor FECO=24 % (Dhop=1.4×10−12 cm2 s−1 and =91.4 Ω). For such a decoupling strategy, careful choice of the host framework is critical in pairing up with the underlying electrochemical properties of the catalysts to facilitate the charge delivery for its activation.  相似文献   

9.
Inspired by the unique structure and function of the natural chloride channel (ClC) selectivity filter, we present herein the design of a ClC-type single channel molecule. This channel displays high ion transport activity with half-maximal effective concentration, EC50, of 0.10 μM, or 0.075 mol % (channel molecule to lipid ratio), as determined by fluorescent analysis using lucigenin-encapsulated vesicles. Planar bilayer lipid membrane conductance measurements indicated an excellent Cl/K+ selectivity with a permeability ratio P /P up to 12.31, which is comparable with the chloride selectivity of natural ClC proteins. Moreover, high anion/anion selectivity (P /P =66.21) and pH-dependent conductance and ion selectivity of the channel molecule were revealed. The ClC-like transport behavior is contributed by the cooperation of hydrogen bonding and anion–π interactions in the central macrocyclic skeleton, and by the existence of pH-responsive terminal phenylalanine residues.  相似文献   

10.
Selective C –C couplings are powerful strategies for the rapid and programmable construction of bi‐ or multiaryls. To this end, the next frontier of synthetic modularity will likely arise from harnessing the coupling space that is orthogonal to the powerful Pd‐catalyzed coupling regime. This report details the realization of this concept and presents the fully selective arylation of aryl germanes (which are inert under Pd0/PdII catalysis) in the presence of the valuable functionalities C?BPin, C?SiMe3, C?I, C?Br, C?Cl, which in turn offer versatile opportunities for diversification. The protocol makes use of visible light activation combined with gold catalysis, which facilitates the selective coupling of C?Ge with aryl diazonium salts. Contrary to previous light‐/gold‐catalyzed couplings of Ar–N2+, which were specialized in Ar–N2+ scope, we present conditions to efficiently couple electron‐rich, electron‐poor, heterocyclic and sterically hindered aryl diazonium salts. Our computational data suggest that while electron‐poor Ar–N2+ salts are readily activated by gold under blue‐light irradiation, there is a competing dissociative deactivation pathway for excited electron‐rich Ar–N2+, which requires an alternative photo‐redox approach to enable productive couplings.  相似文献   

11.
Although examples of multiple bonds between actinide elements and main-group elements are quite common, studies of the multiple bonds between actinide elements and transition metals are extremely rare owing to difficulties associated with their synthesis. Here we report the first example of molecular uranium complexes featuring a cis-[M U M] core (M=Rh, Ir), which exhibits an unprecedented arrangement of two M U double dative bond linkages to a single U center. These complexes were prepared by the reactions of chlorine-bridged heterometallic complexes [{U{N(CH3)(CH2CH2NPiPr2)2}(Cl)2[(μ-Cl)M(COD)]2}] (M=Rh, Ir) with MeMgBr or MeLi, a new method for the construction of species with U−M multiple bonds. Theoretical calculations including dispersion confirmed the presence of two U M double dative bonds in these complexes. This study not only enriches the U M multiple bond chemistry, but also provides a new opportunity to explore the bonding of actinide elements.  相似文献   

12.
13.
Electrochemical reduction of CO2 into various chemicals and fuels provides an attractive pathway for environmental and energy sustainability. It is now shown that a FeP nanoarray on Ti mesh (FeP NA/TM) acts as an efficient 3D catalyst electrode for the CO2 reduction reaction to convert CO2 into alcohols with high selectivity. In 0.5 m KHCO3, such FeP NA/TM is capable of achieving a high Faradaic efficiency (FE ) up to 80.2 %, with a total FE of 94.3 % at ?0.20 V vs. reversible hydrogen electrode. Density functional theory calculations reveal that the FeP(211) surface significantly promotes the adsorption and reduction of CO2 toward CH3OH owing to the synergistic effect of two adjacent Fe atoms, and the potential‐determining step is the hydrogenation process of *CO.  相似文献   

14.
The formation of an appropriate solid electrolyte interphase (SEI) at the anode of a sodium battery is crucially dependent on the electrochemical stability of solvent and electrolyte at the redox potential of Na/Na+ in the respective system. In order to determine entropic contributions to the relative stability of the electrolyte solution, we measure the reaction entropy of Na metal deposition for diglyme (DG) and propylene carbonate (PC) based electrolyte solutions by electrochemical microcalorimetry at single electrodes. We found a large positive reaction entropy for Na+ deposition in DG of ΔR 234 J mol−1 K−1 (c.f.: ΔR 83 J mol−1 K−1), which signals substantial entropic destabilization of Na+ in DG by about 0.73 eV, thus increasing the stability of solvent and electrolyte relative to Na+ reduction. We attribute this strong entropic destabilization to a highly negative solvation entropy of Na+, due to the low dielectric constant and high freezing entropy of DG.  相似文献   

15.
N-Type thermoelectrics typically consist of small molecule dopant+polymer host. Only a few polymer dopant+polymer host systems have been reported, and these have lower thermoelectric parameters. N-type polymers with high crystallinity and order are generally used for high-conductivity ( ) organic conductors. Few n-type polymers with only short-range lamellar stacking for high-conductivity materials have been reported. Here, we describe an n-type short-range lamellar-stacked all-polymer thermoelectric system with highest of 78 S−1, power factor (PF) of 163 μW m−1 K−2, and maximum Figure of merit (ZT) of 0.53 at room temperature with a dopant/host ratio of 75 wt%. The minor effect of polymer dopant on the molecular arrangement of conjugated polymer PDPIN at high ratios, high doping capability, high Seebeck coefficient (S) absolute values relative to , and atypical decreased thermal conductivity ( ) with increased doping ratio contribute to the promising performance.  相似文献   

16.
17.
All-solid-state batteries are promising candidates for safe energy-storage systems due to non-flammable solid electrolytes and the possibility to use metallic lithium as an anode. Thus, there is a challenge to design new solid electrolytes and to understand the principles of ion conduction on an atomic scale. We report on a new concept for compounds with high lithium ion mobility based on a rigid open-framework boron structure. The host–guest structure Li6B18(Li3N) comprises large hexagonal pores filled with Li7N] strands that represent a perfect cutout from the structure of α-Li3N. Variable-temperature 7Li NMR spectroscopy reveals a very high Li mobility in the template phase with a remarkably low activation energy below 19 kJ mol−1 and thus much lower than pristine Li3N. The formation of the solid solution of Li6B18(Li3N) and Li6B18(Li2O) over the complete compositional range allows the tuning of lithium defects in the template structure that is not possible for pristine Li3N and Li2O.  相似文献   

18.
The role of β-CoOOH crystallographic orientations in catalytic activity for the oxygen evolution reaction (OER) remains elusive. We combine correlative electron backscatter diffraction/scanning electrochemical cell microscopy with X-ray photoelectron spectroscopy, transmission electron microscopy, and atom probe tomography to establish the structure–activity relationships of various faceted β-CoOOH formed on a Co microelectrode under OER conditions. We reveal that ≈6 nm β-CoOOH(01 0), grown on [ 0]-oriented Co, exhibits higher OER activity than ≈3 nm β-CoOOH(10 3) or ≈6 nm β-CoOOH(0006) formed on [02 - and [0001]-oriented Co, respectively. This arises from higher amounts of incorporated hydroxyl ions and more easily reducible CoIII−O sites present in β-CoOOH(01 0) than those in the latter two oxyhydroxide facets. Our correlative multimodal approach shows great promise in linking local activity with atomic-scale details of structure, thickness and composition of active species, which opens opportunities to design pre-catalysts with preferred defects that promote the formation of the most active OER species.  相似文献   

19.
Hydroxylamine (NH2OH), a vital industrial feedstock, is presently synthesized under harsh conditions with serious environmental and energy concerns. Electrocatalytic nitric oxide (NO) reduction is attractive for the production of hydroxylamine under ambient conditions. However, hydroxylamine selectivity is limited by the competitive reaction of ammonia production. Herein, we regulate the adsorption configuration of NO by adjusting the atomic structure of catalysts to control the product selectivity. Co single-atom catalysts show state-of-the-art NH2OH selectivity from NO electroreduction under neutral conditions (FE : 81.3 %), while Co nanoparticles are inclined to generate ammonia (FE : 92.3 %). A series of in situ characterizations and theoretical simulations unveil that linear adsorption of NO on isolated Co sites enables hydroxylamine formation and bridge adsorption of NO on adjacent Co sites induces the production of ammonia.  相似文献   

20.
We report a long-lived charge-separated state in a chromophoric pair ( DC-PDI2 ) that uniquely integrates the advantages of fundamental processes of photosynthetic reaction centers: i) Symmetry-breaking charge-separation (SB-CS) and ii) Marcus-inverted-region dependence. The near-orthogonal bichromophoric DC-PDI2 manifests an ultrafast evolution of the SB-CS state with a time constant of =0.35±0.02 ps and a slow charge recombination (CR) kinetics with =4.09±0.01 ns in ACN. The rate constant of CR of DC-PDI2 is 11 686 times slower than SB-CS in ACN, as the CR of the PDI radical ion-pair occurs in the deep inverted region of the Marcus parabola ( >λ). In contrast, an analogous benzyloxy (BnO)-substituted DC-BPDI2 showcases a ≈10-fold accelerated CR kinetics with lowering to ≈1536 in ACN, by virtue of a decreased CR driving force. The present investigation demonstrates a control of molecular engineering to tune the energetics and kinetics of the SB-CS material, which is essential for next-generation optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号