首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient enantiospecific synthesis of the (R)‐ and (S)‐enantiomers of flavanone and 2‐methylchromanone is described. The key steps are a C,C‐bond formation by ring opening of a chiral epoxide with a dithiane anion, followed by a Mitsunobu cyclization. The products obtained have high enantiomeric purity.  相似文献   

2.
A simple reversed‐phase high‐performance liquid chromatography method for the chiral separation of the active pharmaceutical ingredient (S)‐clopidogrel has been developed on the cellulose‐based Chiralcel OJ‐RH chiral stationary phase. The S enantiomer was baseline resolved from its R impurity (impurity C) with a mobile phase consisting of methanol/water (100:15) without any interference coming from the other two potential chiral impurities A and B. The enantio‐ and chemoselective method was partially validated and compared with that reported in the United States Pharmacopoeia for the drug product. The versatility of the Chiralcel OJ‐RH allowed separating the enantiomers of the impurity B also under normal phase and setting up an efficient strategy to convert the racemic sample into the enantiomeric S form on a semipreparative scale.  相似文献   

3.
A chiral liquid chromatography–tandem high resolution mass spectroscopic method was developed for the analysis of indoxacarb enantiomers in rice plants, rice hulls and brown rice. Chiral separation of two enantiomers was carried out on a Superchiral S‐OD column maintained at 20°C and eluted with 0.3 mL/min methanol. Samples were extracted by acetonitrile solution with ultrasound and cleansed by dispersive solid‐phase extraction of 50 mg of primary secondary amine and 50 mg of C18. This method was successfully used to study the degradation and residues of two enantiomers with enriched S‐indoxacarb (2.33S/1R) and pure S‐indoxacarb in rice plants. The half‐lives of R‐indoxacarb and S‐indoxacarb were 4.20–4.33 and 3.45–3.57 days in rice plants during the degradation of enriched S‐indoxacarb in Guizhou and Hunan, respectively, whereas the half‐lives of pure S‐indoxacarb were 2.68 and 3.69 days in Guizhou and Hunan, respectively. The results indicated that preferential S‐indoxacarb degradation occurred and that enantiomeric transformation was absent in the total experiment periods of pure S‐indoxacarb in rice plants. The final residue concentrations of indoxacarb enantiomers in brown rice were significantly less than those in rice plants and rice hulls in the same rice field after applying indoxacarb SC and indoxacarb EC.  相似文献   

4.
Diastereomers of (RS)‐propranolol were synthesized using (S)‐levofloxacin‐based new chiral derivatizing reagents (CDRs). Levofloxacin was chosen as the pure (S)‐enantiomer for its high molar absorptivity (εo ~ 24000) and availability at a low price. Its ‐COOH group had N‐hydroxysuccinimide and N‐hydroxybenzotriazole, which acted as good leaving groups during nucleophilic substitution by the amino group of the racemic (RS)‐propranolol; the CDRs were characterized by UV, IR, 1H‐NMR, high resolution mass spectrometry (HRMS) and carbon, hydrogen, nitrogen, and sulphur fundamental elemental components analyser (CHNS). Diastereomers were separated quantitatively using open column chromatography; absolute configuration of the diastereomers was established and the reagent moiety was detagged under microwave‐assisted acidic conditions. (S)‐ and (R)‐propranolol as pure enantiomers and (S)‐levofloxacin were separated, isolated and characterized. Optimized lowest‐energy structures of the diastereomers were developed using Gaussian 09 Rev. A.02 program and hybrid density functional B3LYP with 6‐31G* basis set (based on density functional theory) for explanation of elution order and configuration. In addition, RP HPLC conditions for separation of diastereomers were optimized with respect to pH, concentration of buffer, flow rate of mobile phase and nature of organic modifier. HPLC separation method was validated as per International Conference on Harmonization guidelines. With the systematic application of various analytical techniques, absolute configuration of the diastereomers (and the native enantiomers) of (RS)‐propranolol was established. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Because choice of chiral nuclear magnetic resonance (NMR) shift reagents and concentration conditions have been made empirically by trials and errors for chiral NMR analyses, the prediction of NMR signal separation behavior is an urgent issue. In this study, the separation of enantiomeric and enantiotopic 1H and 13C NMR signals for α-amino acids and tartaric acid was performed by using the praseodymium(III) complex with (S,S)-ethylenediamine-N,N′-disuccinate ((S,S)-EDDS). All the present D-amino acids exhibited larger downfield shift of their α-protons and α-carbons compared with those for the corresponding L-amino acids in common. This regularity is applicable to absolute configurational assignment and determination of optical purity of amino acids. The chemical shifts of β-protons of d - and l -alanine fully bound with the Pr(III) ((S,S)-EDDS) complex (δbs) and the adduct formation constants of both enantiomers (Ks) were obtained by dependences of the observed downfield shifts of the β-protons on the total concentrations of the respective enantiomers in the presence of a constant concentration of the Pr(III) complex. The difference in the K values was found to be predominant determining factor for the enantiomeric signal separation. The chemical shifts of both enantiomers (δs) and the enantiomeric signal separations (Δδs) under given conditions could be calculated from the δb and K values. Furthermore, prediction of the signal separation behavior was enabled by using the calculated δ values and the signal broadening obtained by dependences of the half-height widths of the observed signals on the bound/free substrate concentration ratios for the respective enantiomers.  相似文献   

6.
(R)-Lansoprazole, (S)-pantoprazole, and (R)-rabeprazole are commonly used drugs for peptic ulcers. The self-disproportionation of the enantiomers of these prazoles in regular column chromatography is described herein. When non-racemic mixtures of the prazoles were eluted under achiral, gravity-driven silica gel column chromatography conditions, enantiomeric enrichment occurred in the first fractions, while enantiomeric depletion occurred in the last fractions. The pure enantiomers of all prazoles can be prepared from non-racemic starting materials using a simple procedure (achiral chromatography). Thus, a new method for obtaining a sample with very high enantiomeric purity was established. These results suggested that caution is required to avoid enantiomer fractionation during the purification of the asymmetric synthesis products by chromatography.  相似文献   

7.
Recycling countercurrent chromatography was successfully applied to the resolution of 2‐(4‐bromomethylphenyl)propionic acid, a key synthetic intermediate for synthesis of nonsteroidal anti‐inflammatory drug loxoprofen, using hydroxypropyl‐β‐cyclodextrin as chiral selector. The two‐phase solvent system composed of n‐hexane/n‐butyl acetate/0.1 mol/L citrate buffer solution with pH 2.4 (8:2:10, v/v/v) was selected. Influence factors for the enantioseparation were optimized, including type of substituted β‐cyclodextrin, concentration of hydroxypropyl‐β‐cyclodextrin, separation temperature, and pH of aqueous phase. Under optimized separation conditions, 50 mg of 2‐(4‐bromomethylphenyl)propionic acid was enantioseparated using preparative recycling countercurrent chromatography. Technical details for recycling elution mode were discussed. The purities of both the S and R enantiomers were over 99.0% as determined by high‐performance liquid chromatography. The enantiomeric excess of the S and R enantiomers reached 98.0%. The recovery of the enantiomers from eluted fractions was 40.8–65.6%, yielding 16.4 mg of the S enantiomer and 10.2 mg of the R enantiomer. At the same time, we attempted to enantioseparate the anti‐inflammatory drug loxoprofen by countercurrent chromatography and high‐performance liquid chromatography using a chiral mobile phase additive. However, no successful enantioseparation was achieved so far.  相似文献   

8.
A facile method based on electrospray mass spectrometry was established and validated for the differentiation of enantiomeric tadalafil isomers without using chiral chromatographic separation. The enantiomers were coupled with a chiral selector to form diastereomeric complex ions. Nickel–tadalafil complexes, [NiII(tadalafil)(l ‐Trp)‐H]+, produced a characteristic fragment ion at m /z 524 by loss of 1‐methyl‐1,6‐dihydropyrazine‐2,5‐dione via collision‐induced dissociation. The relative abundance of this fragment ion to the precursor contributed to differentiate tadalafil enantiomers, and energy‐resolved product‐ion spectra were applied to determine the molar composition of tadalafil in the mixture (R ,R and S ,S ) as well. In addition, the other two forms of stereomeric isomers of tadalafil (R ,S and S ,R ) could be also distinguished and analyzed by this method. The method was validated in different types of mass spectrometers (AB quadrupole time‐of‐flight and Bruker ion trap) and also verified by a chiral high‐performance liquid chromatography coupled with quadrupole time‐of‐flight. The chiral determination of tadalafil using MS method proved to be rapid (1‐min run time for each sample) and to have the same accuracy and precision comparable to chiral liquid chromatography mass spectrometry methods. This method provides an alternative to commonly used chromatographic technique for chiral determination and is particularly useful in rapid screening in enantioselective synthesis and enantiomeric impurity detection in pharmaceutical industry. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
The chiral ferroelectric smectic C (SmC*) phase, characterized by a helical superstructure, has been well exploited in developing high‐resolution microdisplays that have been effectively employed in the fabrication of a wide varieties of portable devices. Although, an overwhelming number of optically active (chiral) liquid crystals (LCs) exhibiting a SmC* phase have been designed and synthesized, the search for new systems continues so as to realize mesogens capable of meeting technical necessities and specifications for their end‐use. In continuation of our research work in this direction, herein we report the design, synthesis, and thermal behavior of twenty new optically active, three‐ring calamitic LCs belonging to four series. The first two series comprise five pairs of enantiomeric Schiff bases whereas the other two series are composed of five pairs of enantiomeric salicylaldimines. In each pair of optical isomers, the configuration of a chiral center in one stereoisomer is opposite to that of the analogous center in the other isomer as they are derived from (3 S)‐3,7‐dimethyloctyloxy and (3 R)‐3,7‐dimethyloctyloxy tails. To probe the structure–property correlations in each series, the length of the n‐alkoxy tail situated at the other end of the mesogens has been varied from n‐octyloxy to n‐dodecyloxy. The measurement of optical activity of these chiral mesogens was carried out by recording their specific rotations. As expected, enantiomers rotate plane polarized light in the opposite direction but by the same magnitude. The thermal behavior of the compounds was established by using a combination of optical polarizing microscopy, differential scanning calorimetry, and powder X‐ray diffraction. These complementary techniques demonstrate the existence of the expected, thermodynamically stable, chiral smectic C (SmC*) LC phase besides blue phase I/II (BPI or BPII) and chiral nematic (N*) phase. However, as noted in our previous analogous study, the vast majority of the Schiff bases show an additional metastable, unfamiliar smectic (SmX) phase just below the SmC* phase. Notably, the SmC* phase persists over the temperature range ≈80–115 °C. Two mesogens chosen each from Schiff bases and salicylaldimines were investigated for their electrical switching behavior. The study reveals the ferroelectric switching characteristics of the SmC* phase featuring the spontaneous polarization (PS) in the range 69–96 nC cm?2. The helical twist sense of the SmC* phase as well as the N* phase formed by a pair of enantiomeric Schiff bases and salicylaldimines has been established with the help of circular dichroism (CD) spectroscopic technique. As expected, the SmC* and the N* phase of a pair of enantiomers showed mirror image CD signals. Most importantly, the reversal of helical handedness from left to right and vice versa has been evidenced during the N* to SmC* phase transition, implying that the screw sense of the helical array of the N* phase and the SmC* phase of an enantiomer is opposite.  相似文献   

10.
In the present study, an in silico methodology able to define the binding modes adopted by carnosine enantiomers in the setting of the chiral recognition process is described. The inter‐ and intramolecular forces involved in the enantioseparation process with the Teicoplanin A2‐2 chiral selector and carnosine as model compound are successfully identified. This approach fully rationalizes, at a molecular level, the (S) < (R) enantiomeric elution order obtained under reversed‐phase conditions. Consistent explanations were achieved by managing molecular dynamics results with advanced techniques of data analysis. As a result, the time‐dependent identification of all the interactions simultaneously occurring in the chiral selector‐enantiomeric analyte binding process was obtained. Accordingly, it was found that only (R)‐carnosine is able to engage a stabilizing charge–charge interaction through its ionized imidazole ring with the carboxylate counter‐part on the chiral selector. Instead, (S)‐carnosine establishes intramolecular contacts between its ionized functional groups, that limit its conformational freedom and impair the association with the chiral selector unit.  相似文献   

11.
Dichlorprop is available for agricultural use as a chiral pesticide. In this study, the stereoselective determination of dichlorprop enantiomers in tea samples such as green, black, jasmine, and oolong was developed by ultra performance LC with fluorescence spectrometry after covalent chiral derivatization. The separation was achieved on an Acquity BEH C18 column with the mobile phase consisting of 0.1% formic acid in acetonitrile/water at a flow rate of 0.4 mL/min. In the covalent chiral derivatization using (S)‐(+)‐4‐(N,N‐dimethylaminosulfonyl)‐7‐(3‐aminopyrrolidin‐1‐yl)‐2,1,3‐benzoxadiazole, the peak resolution between the S and R‐dichlorprop enantiomers was 2.6. LODs and LOQs values were 10 and 50 ng/mL standard solution. The linearity of the calibration curves yielded the coefficients (r2 > 0.99, ranging from 0.05 to 5 μg/mL) of determination of each of the dichlorprop enantiomers. SPE extraction was used for the sample preparation of dichlorprop in various tea samples. Recoveries were in the range of 82.4–97.6% with associated precision values (within‐day: 82.4–95.8%, n = 6, and between‐day: 83.7–97.6% for 3 days) for repeatability and reproducibility. Based on this result, our method has been proven to be highly efficient and suitable for the routine assay of dichlorprop enantiomers in various tea samples. We propose that the ultra performance LC assay after covalent chiral derivatization would be the renewed tools in the era of chiral stationary platform for chiral pesticide residues in foods.  相似文献   

12.
New orthoconic antiferroelectric liquid crystalline materials were synthesised and characterised in their racemic forms and as (S) enantiomers. The materials possess oligo-methylene spacers of different lengths in semi-fluorinated achiral chains and lateral substitution by fluorine at two different positions of the molecular core. For comparison purposes, analogical materials without fluorine lateral substitutions were also prepared. Polysaccharide chiral stationary phases based on two different chiral selectors were used for the separation of the enantiomers of the individual racemic mixtures by high-performance liquid chromatography. A baseline separation of (S) and (R) enantiomers was obtained for four of the six studied liquid crystalline materials. Two of the materials were partially separated under the optimised separation conditions. The elution order of the individual enantiomers in the racemic mixtures was successfully assigned, as pure (S) enantiomers of all the studied materials were available. Both the position of the fluorine atom within the molecular core and the size of the achiral moiety had significant effects on the separation of the individual enantiomers of the studied compounds. Moreover, it was also found that the structure of the chiral stationary phase selector significantly influenced the enantiomeric resolution.  相似文献   

13.
A chiral liquid chromatographic method for enantiomeric resolution of β-amino-β-(3-methoxyphenyl) propionic acid was developed and validated. The “hybrid” π-electron donor–acceptor based stationary phase (R,R) Whelk-01 was found to be enantiomerically selective for (R) and (S) enantiomers of β-amino-β-(3-methoxyphenyl) propionic acid with a resolution greater than 2.0. The effects of isopropyl alcohol and ethanol on enantioselectivity and resolution of enantiomers were evaluated. Calibration curves were linear over the range of 0.10–1.00, with a regression coefficient (r) of 0.999. The limit of detection (LOD) and limit of quantification (LOQ) were 300 and 1,000 ng mL−1 respectively for 10 μL injection volume. The percentage RSD of the peak area of six replicate injections of (S) enantiomer at LOQ concentration was 2.8. The percentage recovery of (S) enantiomer from (R) enantiomer samples ranged from 92 to 102. The test solution was observed to be stable up to 24 h after the preparation. The developed normal phase chiral LC method can be used for the enantiomeric purity evaluation of R-β-amino-β-(3-methoxyphenyl) propionic acid.  相似文献   

14.
Summary The chromatographic resolution of the enantiomers of sulindac has been achieved using a Chiralpak AD CSP (10 μm, 250×4.6 mm) with a mobile phase of hexane: ethanol (85∶15 v/v) containing trifluoroacetic acid (0.05% v/v) at a flow rate of 1.0 mL min−1. Under these conditions the enantiomers eluted with separation and resolution factors of 1.43 and 2.46 respectively. Semipreparative isolation of the enantiomers and their characterization by circular dichroism spectroscopy and NMR, in the presence of a chiral shift reagent, indicated that the elution order was (−)-(S)- before (+)-(R)-sulindac. The enantiomeric composition of sulindac in urine following administration of the racemic drug to man was determined by sequential achiral-chiral chromatography. Achiral analysis was carried out using a Spherisorb S5 ODS2 stationary phase (5 μm, 250×4.6 mm) and a mobile phase of aqueous acetic acid (2% v/v; pH 3.5): acetonitrile: THF (50∶48∶2 by volume) at a flow rate of 1.0 mL min−1. The HPLC eluate containing sulindac (retention time 4.9 min) was collected and following workup, the enantiomeric composition of the drug was determined using the CSP. Over the 24 h collection period sulindac was excreted predominantly as theR-enantiomer, but the enantiomeric composition was found to vary markedly with time which is presumably associated with the complex metabolism of the drug.  相似文献   

15.
CE methods have been developed for the chiral analysis of new types of six acyclic nucleoside phosphonates, nucleotide analogs bearing [(3‐hydroxypropan‐2‐yl)‐1H‐1,2,3‐triazol‐4‐yl]phosphonic acid, 2‐[(diisopropoxyphosphonyl)methoxy]propanoic acid, or 2?(phosphonomethoxy)propanoic acid moieties attached to adenine, guanine, 2,6‐diaminopurine, uracil, and 5‐bromouracil nucleobases, using neutral and cationic cyclodextrins as chiral selectors. With the exception of the 5‐bromouracil‐derived acyclic nucleoside phosphonate with a 2‐(phosphonomethoxy)propanoic acid side chain, the R and S enantiomers of the other five acyclic nucleoside phosphonates were successfully separated with sufficient resolutions, 1.51–2.94, within a reasonable time, 13–28 min, by CE in alkaline BGEs (50 mM sodium tetraborate adjusted with NaOH to pH 9.60, 9.85, and 10.30, respectively) containing 20 mg/mL β‐cyclodextrin as the chiral selector. A baseline separation of the R and S enantiomers of the 5‐bromouracil‐derived acyclic nucleoside phosphonate with 2‐(phosphonomethoxy)propanoic acid side chain was achieved within a short time of 7 min by CE in an acidic BGE (20:40 mM Tris/phosphate, pH 2.20) using 60 mg/mL quaternary ammonium β‐cyclodextrin chiral selector. The developed methods were applied for the assessment of the enantiomeric purity of the above acyclic nucleoside phosphonates. The preparations of all these compounds were found to be synthesized in pure enantiomeric forms. Using UV absorption detection at 206 nm, their concentration detection limits were in the low micromolar range.  相似文献   

16.
An LC method was developed and prevalidated for the enantiomeric purity determination of S‐amlodipine in polar organic solvent chromatography using a chlorine‐containing cellulose‐based chiral stationary phase (CSP). The concentration of formic acid (FA) (0.01–0.2%) in the mobile phase containing acetonitrile as the main solvent was found to influence the elution order of amlodipine enantiomers as well as the enantioresolution. A reversal of the enantiomer elution order of amlodipine was only observed with chiral stationary phases with both electron‐withdrawing (chloro) and electron‐donating groups (methyl) on the phenyl moieties of the chiral selector, namely cellulose tris(3‐chloro‐4‐methylphenylcarbamate) and cellulose tris(4‐chloro‐3‐methylphenylcarbamate). The highest enantioresolution (Rs: 4.1) value was obtained at the lowest FA concentration (0.01%) using cellulose tris(4‐chloro‐3‐methylphenylcarbamate) as the chiral selector and the enantiomeric impurity, R‐amlodipine, eluted first under these conditions. Therefore, the mobile phase selected for the prevalidation of the method consisted of ACN/0.1% DEA/0.01% FA and the temperature was set at 25°C. The method was prevalidated by means of the strategy based on the total measurement error and the accuracy profile. The method was found to be selective and the limit of quantification was found to be about 0.05% for R‐amlodipine, while the limit of detection was close to 0.02%.  相似文献   

17.
Two methods are compared for analyzing the enantiomeric purity of aliphatic amines and amino alcohols using NMR spectroscopy. The first employs (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid as a chiral NMR solvating agent in methanol‐d4. The second involves a derivatization scheme in which the amine is reacted with naphtho[2,3‐c]furan‐1,3‐dione to form the corresponding amide. The naphthyl amide is then mixed with a chiral calix[4]resorcinarene in deuterium oxide. The crown ether only produces sufficient enantiomeric discrimination to determine enantiomeric purity for three of the nine substrates studied. The system with the naphthyl amide and a calix[4]resorcinarene produces enantiomeric discrimination of sufficient magnitude to determine enantiomeric purity for all nine substrates. The H1 and H4 resonances of the naphthyl ring are especially suitable to monitor for enantiomeric discrimination. The order of the (R)‐ and (S)‐enantiomers of the H1 and H4 resonances exhibit specific trends for aliphatic amines and amino alcohols that correlate with the absolute configuration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Cobalt(III) tetramethylchiroporphyrin, CoCl(TMCP), is a useful chiral shift reagent for structure attribution, absolute configuration assignment and enantiomeric excess determination of amino acid methyl esters by 1H NMR spectroscopy. However, it has two axial sites available for amine coordination, a structural feature which generates n(n + 1)/2 diastereomeric species and n2 distinct spin systems from a mixture of n amino ester enantiomers, making the analysis of complex amino acid samples exceedingly difficult by classical 1‐D or 2‐D NMR methods when n > 3. The 1‐D TOCSY experiment is shown to be a powerful tool for the selective excitation and detection of every single component of a mixture of four amino acid methyl esters bound to CoCl(TMCP): those of(S)‐Leu, (S)‐Asp, (R)‐Asp and (S)‐Glu, for example. The potential utility of this methodology for the determination of amino acid enantiomers in carbonaceous meteorites or other extraterrestrial samples is suggested. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
cis‐Itraconazole is a chiral antifungal drug administered as a racemate. The knowledge of properties of individual cis‐itraconazole stereoisomers is vital information for medicine and biosciences as different stereoisomers of cis‐itraconazole may possess different affinity to certain biological pathways in the human body. For this purpose, either chiral synthesis of enantiomers or chiral separation of racemate can be used. This paper presents a two‐step high‐performance liquid chromatography approach for the semipreparative isolation of four stereoisomers (two enantiomeric pairs) of itraconazole using polysaccharide stationary phases and volatile organic mobile phases without additives in isocratic mode. The approach used involves the separation of the racemate into three fractions (i.e. two pure stereoisomers and one mixed fraction containing the remaining two stereoisomers) in the first run and consequent separation of the collected mixed fraction in the second one. For this purpose, combination of cellulose tris‐(4‐methylbenzoate) and cellulose tris‐(3,5‐dimehylphenylcarbamate) columns with complementary selectivity for cis‐itraconazole provided full separation of all four stereoisomers (with purity of each isomer > 97%). The stereoisomers were collected, their optical rotation determined and their identity confirmed based on the results of a previously published study. Pure separated stereoisomers are subjected to further biological studies.  相似文献   

20.
Aromatic‐imide‐based thermally activated delayed fluorescent (TADF) enantiomers, (+)‐(S,S)‐ CAI‐Cz and (?)‐(R,R)‐ CAI‐Cz , were efficiently synthesized by introducing a chiral 1,2‐diaminocyclohexane to the achiral TADF unit. The TADF enantiomers exhibited high PLQYs of up to 98 %, small ΔEST values of 0.06 eV, as well as obvious temperature‐dependent transient PL spectra, thus demonstrating their excellent TADF properties. Moreover, the TADF enantiomers showed mirror‐image CD and CPL activities. Notably, the CP‐OLEDs with CPEL properties based on the TADF enantiomers not only achieved high EQE values of up to 19.7 and 19.8 %, but also displayed opposite CPEL signals with gEL values of ?1.7×10?3 and 2.3×10?3, which represents the first CP‐OLEDs, based on the enantiomerically pure TADF materials, having both high efficiencies and intense CPEL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号