首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combinatorial antitumor therapies using different combinations of drugs and genes are emerging as promising ways to overcome drug resistance, which is a major cause for the failure of cancer treatment. However, dramatic pharmacokinetic differences of drugs greatly impede their combined use in cancer therapy, raising the demand for drug delivery systems (DDSs) for tumor treatment. By employing fluorescent dithiomaleimide (DTM) as a linker, we conjugate two paclitaxel (PTX) molecules with a floxuridine (FdU)-integrated antisense oligonucleotide (termed chemogene) to form a drug–chemogene conjugate. This PTX–chemogene conjugate can self-assemble into a spherical nucleic acid (SNA)-like micellular nanoparticle as a carrier-free DDS, which knocks down the expression of P-glycoprotein and subsequently releases FdU and PTX to exert a synergistic antitumor effect and greatly inhibit tumor growth.  相似文献   

2.
An amphiphilic drug–dye conjugate ( PTX‐Pt‐BDP ) was designed and synthesized with a platinum compound as the hydrophilic head. The precursor of PTX‐Pt‐BDP was obtained under mild conditions by means of a three‐component Passerini reaction. PTX‐Pt‐BDP could self‐assemble into nanoparticles ( PTX‐Pt‐BDP NPs) in aqueous solution via a nanoprecipitation method. The obtained nanoparticles exhibited favorable structural stability in both water and physiological environment. PTX‐Pt‐BDP NPs could be endocytosed by cancer cells as revealed by confocal laser scanning microscopy and exert potent cytotoxicity. This work highlights the potential of nanomedicines from amphiphilic drug–dye conjugates for cancer cell imaging and chemotherapy.  相似文献   

3.
Nanoparticles‐based drug delivery strategies have been widely researched for cancer therapy. However, most of them are expected to accumulate in tumor sites via the enhanced permeability and retention (EPR) effect, which is insufficient to deliver the loaded drug into tumors. Cell membrane–camouflaged nanoparticles have obtained much attention for their excellent stability and long blood circulation and reduced the macrophage cells uptake in drug delivery. Herein, bone marrow–derived mesenchymal stem cell membrane vesicle (SCV)–coated paclitaxel (PTX)–loaded poly (lactide‐co‐glycolide) (PLGA) nanoparticles (SCV/PLGA/PTX) were fabricated as the efficient orthotopic breast cancer–targeted drug delivery system. The SCV/PLGA/PTX showed excellent stability, more controlled PTX release, and more effective antitumor effect in vitro. After administration in vivo, SCV/PLGA/PTX exhibited the long‐term retention and enhanced accumulation at tumor sites due to the immune escape and mesenchymal stem cell–mimicking cancer‐targeting capacity. As expected, the SCV/PLGA/PTX could significantly suppress the primary tumor growth by increased apoptosis and necrosis areas within tumor tissues and attenuated the toxic side effects of PTX in 4T1 orthotopic breast cancer model. The study indicated the mesenchymal stem cell membrane coating strategy was highly efficient for targeted drug delivery, which provided a new insight for precise and effective breast cancer treatment.  相似文献   

4.
Antibody–drug conjugates are a very promising class of new anticancer agents, but the use of small‐molecule ligands for the targeted delivery of cytotoxic drugs into solid tumors is less well established. Here, we describe the first small‐molecule drug conjugates for the treatment of carbonic anhydrase IX expressing solid tumors. Using ligand–dye conjugates we demonstrate that such molecules can preferentially accumulate inside antigen‐positive lesions, have fast targeting kinetics and good tumor‐penetrating properties, and are easily accessible by total synthesis. A disulfide‐linked drug conjugate with the maytansinoid DM1 as the cytotoxic payload and a derivative of acetazolamide as the targeting ligand exhibited a potent antitumor effect in SKRC52 renal cell carcinoma in vivo. It was furthermore superior to sunitinib and sorafenib, both small‐molecule standard‐of‐care drugs for the treatment of kidney cancer.  相似文献   

5.
We report a new approach to monitor drug release from nanocarriers via a paclitaxel–methylene blue conjugate (PTX‐MB) with redox activity. This construct is in a photoacoustically silent reduced state inside poly(lactic‐co‐glycolic acid) (PLGA) nanoparticles (PTX‐MB@PLGA NPs). During release, PTX‐MB is spontaneously oxidized to produce a concentration‐dependent photoacoustic signal. An in vitro drug‐release study showed an initial burst release (25 %) between 0–24 h and a sustained release between 24–120 h with a cumulative release of 40.6 % and a 670‐fold increase in photoacoustic signal. An in vivo murine drug release showed a photoacoustic signal enhancement of up to 649 % after 10 hours. PTX‐MB@PLGA NPs showed an IC50 of 78 μg mL?1 and 44.7±4.8 % decrease of tumor burden in an orthotopic model of colon cancer via luciferase‐positive CT26 cells.  相似文献   

6.
We report a novel dual drug‐tailed phospholipid which can form liposomes as a combination of prodrug and drug carrier. An amphiphilic dual chlorambucil‐tailed phospholipid (DCTP) was synthesized by a straightforward esterification. With two chlorambucil molecules as hydrophobic tails and one glycerophosphatidylcholine molecule as a hydrophilic head, the DCTP, a phospholipid prodrug, undergoes assembly to form a liposome without any additives by the thin lipid film technique. The DCTP liposomes, as an effective carrier of chlorambucil, exhibited a very high loading capacity and excellent stability. The liposomes had higher cytotoxic effects to cancer cell lines than free DCTP and chlorambucil. The in vivo antitumor activity assessment indicated that the DCTP liposomes could inhibit the tumor growth effectively. This novel strategy of dual drug‐tailed phospholipid liposomes may be also applicable to other hydrophobic anticancer drugs which have great potential in cancer therapy.  相似文献   

7.
A nanoassembled drug delivery system for anticancer treatment, formed by the host–guest interactions between paclitaxel (PTX) and β‐cyclodextrin (β‐CD) modified poly(acrylic acid) (PCDAA), is successfully prepared. After such design, the aqueous solubility of PTX is greatly increased from 0.34 to 36.02 μg mL?1, and the obtained PCDAA‐PTX nanoparticles (PCDAA‐PTX NPs) exhibit a sustained PTX release behavior in vitro. In vitro cytotoxicity finds that PCDAA‐PTX NPs can accumulate significantly in tumor cells and remain the pharmacological activity of PTX. The in vivo real‐time biodistribution of PCDAA‐PTX NPs is investigated using near‐infrared fluorescence imaging, indicating that the PCDAA‐PTX NPs can effectively target to the tumor site by the enhanced permeability and retention effect in H22 tumor‐bearing mice. Through in vivo antitumor examination, PCDAA‐PTX NPs exhibit superior efficacy in impeding the tumor growth compared to the commercially available Taxol®.

  相似文献   


8.
Photocrosslinked hyaluronic acid/poly(vinyl alcohol)‐styrylpyridinium (HA/PVA‐SbQ) hydrogels were synthesized for controlled antitumor drug delivery. The photocrosslinking reaction was rapid, and the time required for completely converting into the insoluble hydrogels was less than 500 s on exposure to 5 mW/cm2 UV light irradiation. The resulting hydrogels exhibited sensitivity to the pH value of the surrounding environment. Scanning electron microscopic analysis revealed that the morphology and the pore size of the hydrogels could be controlled by changing the ratio of HA and PVA‐SbQ in the formulations. Paclitaxel (PTX)‐loaded hydrogel could also be formed rapidly by UV irradiation of a mixed solution of HA/PVA‐SbQ and PTX. Release profiles of PTX from the hydrogels showed pH‐dependent and sustained manner. Moreover, our data revealed that PTX released from the HA hydrogels remained biologically active and had the capability to kill cancer cells. In contrast, control groups of HA hydrogels without PTX did not exhibit any cytotoxicity. This study demonstrates the feasibility of using HA‐based hydrogels as a potential carrier for chemotherapeutic drugs for cancer treatments. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
We report on the design of a polymeric prodrug of the anticancer agent paclitaxel (PTX) by a grafting‐from‐drug approach. A chain transfer agent for reversible addition fragmentation chain transfer (RAFT) polymerization was efficiently and regioselectively linked to the C2′ position of paclitaxel, which is crucial for its bioactivity. Subsequent RAFT polymerization of a hydrophilic monomer yielded well‐defined paclitaxel–polymer conjugates with high drug loading, water solubility, and stability. The versatility of this approach was further demonstrated by ω‐end post‐functionalization with a fluorescent tracer. In vitro experiments showed that these conjugates are readily taken up into endosomes where native PTX is efficiently cleaved off and then reaches its subcellular target. This was confirmed by the cytotoxicity profile of the conjugate, which matches those of commercial PTX formulations based on mere physical encapsulation.  相似文献   

10.
Accomplishing efficient delivery of a nanomedicine to the tumor site will encounter two contradictions as follows: 1) a contradiction between prolonged circulation time and endocytosis by cancer cells; 2) a dilemma between the stability of nanomedicine during blood circulation and intracellular drug release. While developing a nanomedicine which can solve the above two contradictions simultaneously is still a challenge, here, a multi‐stimuli‐responsive polymeric prodrug (PLys‐co‐(PLys‐DA)‐co‐(PLys‐SS‐PTX))‐b‐PLGLAG‐mPEG (P‐PEP‐SS‐PTX‐DA) is synthesized which is multi‐sensitive to overexpressed matrix metalloproteinase‐2 (MMP‐2), low pH, and high concentration of glutathione in tumors. The P‐PEP‐SS‐PTX‐DA can be dePEGylated and reversed from negative at normal physiological pH to positive charge at tumor extracellular microenvironment; in this way, it can solve the contradiction between prolonged circulation time and endocytosis by cancer cells. Owing to the high reductive conditions in cancer cells, P‐PEP‐SS‐PTX‐DA is ruptured to release paclitaxel (PTX) intracellular efficiently; therefore, it can resolve the dilemma between the stability of nanomedicine during blood circulation and intracellular drug release. These indicate that the multi‐stimuli‐responsive polymeric prodrug has potential application prospects in drug delivery and cancer therapy.  相似文献   

11.
Nanomedicines assembled directly from drug molecules possess several advantages, including precise molecular structure and high content of drugs. Herein, porphyrin–paclitaxel conjugates (Py‐s‐s‐PTX) were synthesized by using a disulfide bond as a linker. The Py‐s‐s‐PTX could self‐assemble into nanoparticles (Py‐s‐s‐PTX NPs) with a size of about 100 nm via disulfide‐induced assembly. Py‐s‐s‐PTX NPs are highly stable under biological conditions and could be destroyed in the presence of reducing agents as revealed by dynamic light scattering. The obtained Py‐s‐s‐PTX NPs could be internalized by cancer cells via endocytosis and disassociated in the reducing cytoplasm, thus releasing PTX in cancer cells. Endosomal escape triggered upon irradiation could enhance the cytotoxicity of paclitaxel, and Py‐s‐s‐PTX NPs possess cytotoxicity comparable to that of free PTX. We believe that this disulfide‐assembled nanomedicine represents a new and important development for chemotherapy in cancer therapy.  相似文献   

12.
Herein, we propose a drug‐free approach to cancer therapy that involves cancer cell targeting calcification (CCTC). Several types of cancer cells, such as HeLa cells, characterized by folate receptor (FR) overexpression, can selectively adsorb folate (FA) molecules and then concentrate Ca2+ locally to induce specific cell calcification. The resultant calcium mineral encapsulates the cancer cells, inducing their death, and in vivo assessments confirm that CCTC treatment can efficiently inhibit tumor growth and metastasis without damaging normal cells compared with conventional chemotherapy. Accordingly, CCTC remarkably improve the survival rate of tumor mice. Notably, both FA and calcium ions are essential ingredients in human metabolism, which means that CCTC is a successful drug‐free method for tumor therapy. This achievement may further represent an alternative cancer therapy characterized by selective calcification‐based substitution of sclerosis for tumor disease.  相似文献   

13.
In this study, a facile method to fabricate reduction‐responsive core‐crosslinked micelles via in situ thiol‐ene “click” reaction was reported. A series of biodegradable poly(ether‐ester)s with multiple pendent mercapto groups were first synthesized by melt polycondensation of diol poly(ethylene glycol), 1,4‐butanediol, and mercaptosuccinic acid using scandium trifluoromethanesulfonate [Sc(OTf)3] as the catalyst. Then paclitaxel (PTX)‐loaded core‐crosslinked (CCL) micelles were successfully prepared by in situ crosslinking hydrophobic polyester blocks in aqueous media via thiol‐ene “click” chemistry using 2,2′‐dithiodiethanol diacrylate as the crosslinker. These PTX‐loaded CCL micelles with disulfide bonds exhibited reduction‐responsive behaviors in the presence of dithiothreitol (DTT). The drug release profile of the PTX‐loaded CCL micelles revealed that only a small amount of loaded PTX was released slowly in phosphate buffer solution (PBS) without DTT, while quick release was observed in the presence of 10.0 mM DTT. Cell count kit (CCK‐8) assays revealed that the reduction‐sensitive PTX‐loaded CCL micelles showed high antitumor activity toward HeLa cells, which was significantly higher than that of reduction‐insensitive counterparts and free PTX. This kind of biodegradable and biocompatible CCL micelles could serve as a bioreducible nanocarrier for the controlled antitumor drug release. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 99–107  相似文献   

14.
Nanocarrier‐based cancer therapy suffers from poor tumor penetration and unsatisfied therapeutical efficacy, as its vascular extravasation efficiency is often compromised by the intrinsic physiological heterogeneity in tumor tissues. In this work, novel near infrared (NIR)‐responsive CuS‐loaded nanogels are prepared to deliver anticarcinogen into the tumor. These hybrid polymeric nanogels possess high photothermal conversion efficiency, and are able to load a large amount of antitumor drug (e.g., doxorubicin [DOX]). More importantly, the thermal heat could induce self‐destruction of the big‐size framework of hybrid nanogels into small nanoparticles, which greatly facilitates tumor penetration to release DOX deep inside the tumor, as validated by photoacoustic (PA) imaging which exhibits 26.3 times enhancement at the interior region compared to signals of groups without laser irradiation. Such structural alteration, combined with strong photothermal and chemotherapy effects, leads to remarkable inhibition of tumor growth in mice. As a result, this NIR‐induced disintegration of CuS‐loaded nanogels provides a novel drug delivery strategy and might open a new window for clinical cancer treatment.  相似文献   

15.
Antibody–drug conjugates (ADCs) offer increased efficacy and reduced toxicity compared to systemic chemotherapy. Less attention has been paid to peptide–drug delivery, which has the potential for increased tumor penetration and facile synthesis. We report a knottin peptide–drug conjugate (KDC) and demonstrate that it can selectively deliver gemcitabine to malignant cells expressing tumor‐associated integrins. This KDC binds to tumor cells with low‐nanomolar affinity, is internalized by an integrin‐mediated process, releases its payload intracellularly, and is a highly potent inhibitor of brain, breast, ovarian, and pancreatic cancer cell lines. Notably, these features enable this KDC to bypass a gemcitabine‐resistance mechanism found in pancreatic cancer cells. This work expands the therapeutic relevance of knottin peptides to include targeted drug delivery, and further motivates efforts to expand the drug‐conjugate toolkit to include non‐antibody protein scaffolds.  相似文献   

16.
Targeted drug delivery systems have attracted increasing attention due to their ability for delivering anticancer drugs selectively to tumor cells. Folic acid (FA)‐conjugated targeted block copolymers, FA‐Pluronic‐polycaprolactone (FA‐Pluronic‐PCL) are synthesized in this study. The anticancer drug paclitaxel (PTX) is loaded in FA‐Pluronic‐PCL nanoparticles by nanoprecipitation method. The in vitro release of PTX from FA‐Pluronic‐PCL nanoparticles shows slow and sustained release behaviors. The effect of FA ligand density of FA‐Pluronic‐PCL nanoparticles on their targeting properties is examined by both cytotoxicity and fluorescence methods. It is shown that FA‐Pluronic‐PCL nanoparticles indicated better targeting ability than non‐targeted PCL‐Pluronic‐PCL nanoparticles. Furthermore, FA‐F127‐PCL nanoparticle with 10% FA molar content has more effective antitumor activity and higher cellular uptake than those with 50% and 91% FA molar content. These results prove that FA‐F127‐PCL nanoparticle with 10% FA molar content can be a better candidate as the drug carrier in targeted drug delivery systems.  相似文献   

17.
Antibody–drug conjugates (ADCs) of defined structure hold great promise for cancer therapies, but further advances are constrained by the complex structures of full‐sized antibodies. Camelid‐derived single‐domain antibody fragments (VHHs or nanobodies) offer a possible solution to this challenge by providing expedited target screening and validation through switching between imaging and therapeutic activities. We used a nanobody (VHH7) specific for murine MHC‐II and rendered “sortase‐ready” for the introduction of oligoglycine‐modified cytotoxic payloads or NIR fluorophores. The VHH7 conjugates outcompeted commercial monoclonal antibodies (mAbs) for internalization and exhibited high specificity and cytotoxicity against A20 murine B‐cell lymphoma. Non‐invasive NIR imaging with a VHH7–fluorophore conjugate showed rapid tumor targeting on both localized and metastatic lymphoma models. Subsequent treatment with the nanobody–drug conjugate efficiently controlled tumor growth and metastasis without obvious systemic toxicity.  相似文献   

18.
Photodynamic therapy (PDT) is based on the cytotoxicity of photosensitizers in the presence of light. Increased selectivity and effectivity of the treatment is expected if a specific uptake of the photosensitizers into the target cells, often tumor cells, can be achieved. An attractive transporter for that purpose is the folic acid receptor α (FRα), which is overexpressed on the surface of many tumor cells and mediates an endocytotic uptake. Here, we describe the synthesis and photobiological characterization of polar β‐carboline derivatives as photosensitizers covalently linked to folate‐tagged albumin as the carrier system. The particles were taken up by KB (human carcinoma) cells within <90 min and then co‐localized with a lysosomal marker. FRα antibodies prevented the uptake and also the corresponding conjugate without folate was not taken up. Accordingly, a folate‐albumin‐β‐carbolinium conjugate proved to be phototoxic, while the corresponding albumin–β‐carbolinium conjugates without FA were nontoxic, both with and without irradiation. An excess of free folate as competitor for the FRα‐mediated uptake completely inhibited the photocytotoxicity. Interestingly, the albumin conjugates are devoid of photodynamic activity under cell‐free conditions, as shown for DNA as a target. Thus, phototoxicity requires cellular uptake and lysosomal degradation of the conjugates. In conclusion, albumin–folate conjugates appear to be promising vehicles for a tumor cell targeted PDT.  相似文献   

19.
The design, synthesis, and in vitro biological studies of a biotin–carbazole–dicyanovinyl–chlorambucil conjugate (Bio‐CBZ‐DCV‐CBL; 6 ) are reported. This conjugate ( 6 ) is a multifunctional single‐molecule appliance composed of a thiol‐sensor DCV functionality, a CBZ‐derived phototrigger as well as fluorescent reporter, and CBL as the anticancer drug, and Bio as the cancer‐targeting ligand. In conjugate 6 , the DCV bond undergoes a thiol–ene click reaction at pH<7 with intracellular thiols, thereby shutting down internal charge transfer between the donor CBZ and acceptor DCV units, resulting in a change of the fluorescence color from green to blue, and thereby, sensing the tumor microenvironment. Subsequent photoirradiation results in release of the anticancer drug CBL in a controlled manner.  相似文献   

20.
A novel drug‐polymer conjugate was prepared by the copper‐catalyzed azide–alkyne cycloaddition reaction between an azide‐functional diblock copolymer and an alkyne‐functional paclitaxel (PTX). The well‐defined azide‐functional diblock copolymer, poly(ethylene glycol) (PEG)‐b‐P(OEGEEMA‐co‐AzPMA), was synthesized via the atom transfer radical polymerization of oligo(ethylene glycol) ethyl ether methacrylate (OEGEEMA) and 3‐azidopropyl methacrylate (AzPMA), using PEG‐Br as macroinitiator and CuBr/PMDETA as a catalytic system. The alkyne‐functional PTX was covalently linked to the copolymer via a click reaction, and the loading content of PTX could be easily tuned by varying the feeding ratio. Transmission electron microscopy and dynamic light scattering results indicated that the drug loaded copolymers could self‐assemble into micelles in aqueous solution. Moreover, the drug release behavior of PEG‐b‐P(OEGEEMA‐co‐AzPMA‐PTX) was pH dependent, and the cumulative release amount of PTX were 50.0% at pH 5.5, which is about two times higher than that at pH 7.4. The in vitro cytotoxicity experimental results showed that the diblock copolymer was biocompatible, with no obvious cytotoxicity, whereas the PTX‐polymer conjugate could efficiently deliver PTX into HeLa and SKOV‐3 cells, leading to excellent antitumor activity. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 366–374  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号