首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
采用分子动力学模拟方法,研究了载能碳离子撞击石墨烯中Stone-Wales缺陷的动力学过程,计算了Stone-Wales缺陷中初级碰撞原子的离位阈能和载能碳离子使其移位的入射阈能,并与完美石墨烯结构计算结果进行对比。通过分析初级碰撞原子与入射离子动能和势能随时间的变化关系,研究了碰撞过程中能量转移过程。研究结果表明,初级碰撞原子产生离位并最终脱离石墨烯体系的最小能量为25.0 eV。当初始动能为23.0 eV时,Stone-Wales缺陷中2个七元环共用的碳-碳键旋转90°形成了完美的石墨烯结构。此外,还发现使Stone-Wales缺陷中初级碰撞原子发生离位的载能碳离子最小入射能为41.0 eV。  相似文献   

2.
采用分子动力学方法研究了碳离子碰撞碳纳米管中顶位、键中心和六元环中心的动力学过程。通过分析低、中、高3种入射能分别对碰撞过程的影响,探索了典型缺陷形成的微观演化过程。研究结果表明,碰撞碳纳米管中不同空间位置,其碰撞结果差异较大,其中顶位碰撞阈能最低,约为20 eV;碰撞六元环中心时碳管会发生严重变形,损伤最为严重。通过分析入射离子动能,碳纳米管热动能、质心动能以及势能随时间的演化规律,阐述了碰撞过程中的能量转移机制。  相似文献   

3.
采用分子动力学方法研究了碳离子碰撞碳纳米管中顶位、键中心和六元环中心的动力学过程。通过分析低、中、高3种入射能分别对碰撞过程的影响,探索了典型缺陷形成的微观演化过程。研究结果表明,碰撞碳纳米管中不同空间位置,其碰撞结果差异较大,其中顶位碰撞阈能最低,约为20 e V;碰撞六元环中心时碳管会发生严重变形,损伤最为严重。通过分析入射离子动能,碳纳米管热动能、质心动能以及势能随时间的演化规律,阐述了碰撞过程中的能量转移机制。  相似文献   

4.
基于分子动力学方法,研究了载能碳离子碰撞锯齿形单壁碳纳米管过程中初级碰撞原子(PKA)的运动过程和能量变化过程.分析了手性指数为(2n+1,0)(n=2~9)的单壁碳纳米管中PKA的穿透能与载能碳离子入射能间的关系.结果表明,穿透能与入射能之间呈线性增长关系,线性变化的斜率与碳纳米管直径有关.通过分析PKA势能随模拟时间的变化规律,阐述了初级碰撞原子的穿透能随入射能的增加而增加的物理机制.  相似文献   

5.
石墨烯中的Stone-wales缺陷对铂原子催化解离氧分子的影响   总被引:2,自引:2,他引:0  
采用密度泛函理论中的UB3LYP方法,研究了石墨烯中的Stone-wales缺陷对铂原子催化解离氧气分子的影响.通过计算发现,氧气分子在以Stone-wales缺陷石墨烯片为载体的铂上(Pt-SW)形成3种吸附结构,通过4条路径,最终生成两种产物.氧气分子最易通过[2+1]环加成作用,吸附在以Stone-wales缺陷石墨烯片为载体的Pt的表面上,吸附能(Eads)为-0.64eV.由于石墨烯片上的Stone-wales缺陷的存在,氧气分子在Pt-SW上解离的4条路径中最有利的解离路径中的决速步能垒都明显高于氧气在以完美石墨烯为载体的Pt(Pt/Graphene)上解离的能垒(1.51eV vs 1.35eV),相应吸收的热量也高于在Pt/Graphene上吸收的热量(0.79eVvs0.15eV).  相似文献   

6.
采用基于密度泛函理论的投影缀加波方法研究了Au、Ag、Cu吸附在缺陷石墨烯单侧和双侧的体系,对吸附体系的吸附能、磁性、电荷转移和电子结构进行了计算和分析.缺陷石墨烯吸附Au、Ag、Cu体系的吸附能比本征石墨烯增加2 eV以上,说明三种金属原子更容易吸附在缺陷位置;吸附体系的电荷密度差分和电子结构的结果表明,Au、Ag、Cu与缺陷石墨烯之间均为化学吸附.计算吸附体系的磁性发现,单侧吸附时三种吸附体系均有磁性,磁矩大约为1μB;双侧吸附时,三种吸附体系磁矩大约为2μB.  相似文献   

7.
采用基于密度泛函理论的投影缀加波方法研究了Au、Ag、Cu吸附在缺陷石墨烯单侧和双侧的体系,对吸附体系的吸附能、磁性、电荷转移和电子结构进行了计算和分析. 缺陷石墨烯吸附Au、Ag、Cu体系的吸附能比本征石墨烯增加2 eV以上,说明三种金属原子更容易吸附在缺陷位置;吸附体系的电荷密度差分和电子结构的结果表明,Au、Ag、Cu与缺陷石墨烯之间均为化学吸附. 计算吸附体系的磁性发现,单侧吸附时三种吸附体系均有磁性,磁矩大约为1μB;双侧吸附时,三种吸附体系磁矩大约为2μB.  相似文献   

8.
采用基于密度泛函理论的第一性原理方法和平板模型研究了CH3SH分子在Cu(111)表面的吸附反应.系统地计算了S原子在不同位置以不同方式吸附的一系列构型, 第一次得到未解离的CH3SH分子在Cu(111)表面顶位上的稳定吸附构型,该构型吸附属于弱的化学吸附, 吸附能为0.39 eV. 计算同时发现在热力学上解离结构比未解离结构更加稳定. 解离的CH3S吸附在桥位和中空位之间, 吸附能为0.75-0.77 eV. 计算分析了未解离吸附到解离吸附的两条反应路径, 最小能量路径的能垒为0.57 eV. 计算结果还表明S―H键断裂后的H原子并不是以H2分子的形式从表面解吸附而是以与表面成键的形式存在. 通过比较S原子在独立的CH3SH分子和吸附状态下的局域态密度, 发现S―H键断裂后S原子和表面的键合强于未断裂时S原子和表面的键合.  相似文献   

9.
采用密度泛函理论,并使用具有周期性边界条件的石墨烯模型近似模拟焦炭表面,研究了Fe原子修饰及点缺陷对NH_3在焦炭表面异相吸附的影响。计算结果表明,NH_3分子在点缺陷石墨烯表面的吸附属于物理吸附,结合能为-0.381 e V;NH_3分子吸附在Fe修饰的完整石墨烯表面属于化学吸附,吸附能为-1.442 eV; Fe原子修饰及点缺陷单独存在下NH_3的吸附能均大于NH_3在完整石墨烯表面的吸附(吸附能为-0.190 eV)。此外,Fe原子修饰与点缺陷共存对NH_3的吸附具有协同作用,结合能达到-3.538 eV,明显大于两者单独存在下NH_3的吸附能之和,综合分析Mulliken布居数与态密度,Fe原子与石墨烯表面、NH_3分子之间有更多地电荷转移,可以解释两者共存对NH_3吸附协同促进的原因。  相似文献   

10.
用质量分析离子动能谱(MIKES)研究了C~6F~6^+→C~6F~5^++F的气相单分子分解及其与Ar和He的碰撞诱导分解(CID)反应。实验结果表明,C~6F~6^+在电离室中获得足够能量而被激发到某一长效激发态,而CID是诱导其分解的必要步骤,且该分解过程有两条能量不同的反应途径。当碰撞气体为Ar时,两条途径所对应的能量变化分别为0eV和+9.8eV(将多余能量转化为动能),而当碰撞气体为He时,则分别为0eV和-17eV(将多余能量转化为内能)。CID/Ar诱导该长效激发态在C-F键断裂之前将多余能量转化为动能,而在CID/He中则将多余能量转化为内能。  相似文献   

11.
Surface-induced interactions of the projectile ion C2D4+ with room-temperature (hydrocarbon covered) stainless steel, carbon highly oriented pyrolytic graphite (HOPG), and two different types of diamond surfaces (O-terminated and H-terminated) were investigated over the range of incident energies from a few eV up to 50 eV. The relative abundance of the product ions in dependence on the incident energy of the projectile ion [collision-energy resolved mass spectra, (CERMS) curves] was determined. The product ion mass spectra contained ions resulting from direct dissociation of the projectile ions, from chemical reactions with the hydrocarbons on the surface, and (to a small extent) from sputtering of the surface material. Sputtering of the surface layer by low-energy Ar+ ions (5–400 eV) indicated the presence of hydrocarbons on all studied surfaces. The CERMS curves of the product ions were analyzed to obtain both CERMS curves for the products of direct surface-induced dissociation of the projectile ion and CERMS curves of products of surface reactions. From the former, the fraction of energy converted in the surface collision into the internal excitation of the projectile ion was estimated as 10% of the incident energy. The internal energy of the surface-excited projectile ions was very similar for all studied surfaces. The H-terminated room-temperature diamond surface differed from the other surfaces only in the fraction of product ions formed in H-atom transfer surface reactions (45% of all product ions formed versus 70% on the other surfaces).  相似文献   

12.
The irradiation-induced sputtering and the structural damage at tungsten surface are investigated by using molecular dynamics simulations at the level of quantum mechanics. Our simulations indicate that the sputtered atoms appear when the energy of incident primary knock-on atom (PKA) is more than 200 eV and the incident angle of the PKA is larger than 65°. Meanwhile, the irradiation-induced vacancies are less when the incident angle of PKA is in the range of 45°-65°. So, the optimum incident angles of PKA are suggested to reduce the irradiation-induced damage of the W surface. Furthermore, we find that the interstitials contained in the systems accelerate the sputtering whereas the intrinsic vacancies suppress the sputtering when the PKA is near the defects.  相似文献   

13.
Ni adsorption on Stone-Wales defect sites in (10,0) zigzag and (5,5) armchair single-wall carbon nanotubes was studied using the density functional theory. The stable adsorption sites and their binding energies on different Stone-Wales defect types were analyzed and compared to those on perfect side walls. It was determined that the sites formed via fusions of 7-7 and 6-7 rings are the most exothermic in the cases of (10,0) and (5,5) defective tubes. In addition C-C bonds associated with Stone-Wales defects are more reactive than the case for a perfect hexagon, thus enhancing the stability of the Ni adsorption. Moreover, the Ni adsorption was found to show a noticeable relationship to the orientation of the Stone-Wales defects with respect to the tube axis. The nature of the Ni adsorption on Stone-Wales defects that have the similar orientation is identical, in spite of the different chiralities.  相似文献   

14.
Dr. Pablo A. Denis 《Chemphyschem》2013,14(14):3271-3277
Dispersion‐corrected density functional theory is utilized to study the addition of aryl radicals to perfect and defective graphene. Although the perfect sheet shows a low reactivity against aryl diazonium salts, the agglomeration of these groups and the addition onto defect sites improves the feasibility of the reaction by increasing binding energies per aryl group up to 27 kcal mol?1. It is found that if a single phenyl radical interacts with graphene, the covalent and noncovalent additions have similar binding energies, but in the particular case of the nitrophenyl group, the adsorption is stronger than the chemisorption. The single vacancy shows the largest reactivity, increasing the binding energy per aryl group by about 80 kcal mol?1. The zigzag edge ranks second, enhancing the reactivity 5.4 times with respect to the perfect sheet. The less reactive defect site is the Stone–Wales type, but even in this case the addition of an isolated aryl radical is exergonic. The arylation process is favored if the groups are attached nearby and on different sublattices. This is particularly true for the ortho and para positions. However, the enhancement of the binding energies decreases quickly if the distance between the two aryl radicals is increased, thereby making the addition on the perfect sheet difficult. A bandgap of 1–2 eV can be opened on functionalization of the graphene sheets with aryl radicals, but for certain configurations the sheet can maintain its semimetallic character even if there is one aryl radical per eight carbon atoms. At the highest level of functionalization achieved, that is, one aryl group per five carbon atoms, the bandgap is 1.9 eV. Regarding the effect of using aryl groups with different substituents, it is found that they all induce the same bandgap and thus the presence of NO2, H, or Br is not relevant for the alteration of the electronic properties. Finally, it is observed that the presence of tetrafluoroborate can induce metallic character in graphene.  相似文献   

15.
X‐ray photoelectron spectroscopy is used to study a wide variety of material systems as a function of depth (“depth profiling”). Historically, Ar+ has been the primary ion of choice, but even at low kinetic energies, Ar+ ion beams can damage materials by creating, for example, nonstoichiometric oxides. Here, we show that the depth profiles of inorganic oxides can be greatly improved using Ar giant gas cluster beams. For NbOx thin films, we demonstrate that using Arx+ (x = 1000‐2500) gas cluster beams with kinetic energies per projectile atom from 5 to 20 eV, there is significantly less preferential oxygen sputtering than 500 eV Ar+ sputtering leading to improvements in the measured steady state O/Nb ratio. However, there is significant sputter‐induced sample roughness. Depending on the experimental conditions, the surface roughness is up to 20× that of the initial NbOx surface. In general, higher kinetic energies per rojectile atom (E/n) lead to higher sputter yields (Y/n) and less sputter‐induced roughness and consequently better quality depth profiles. We demonstrate that the best‐quality depth profiles are obtained by increasing the sample temperature; the chemical damage and the crater rms roughness is reduced. The best experimental conditions for depth profiling were found to be using a 20 keV Ar2500+ primary ion beam at a sample temperature of 44°C. At this temperature, there is no, or very little, reduction of the niobium oxide layer and the crater rms roughness is close to that of the original surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号