首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Olefin alkylation of thiophenic sulfur process was carried out in model gasoline, using Hβ zeolites with different Si/Al2 ratios as catalysts. In particular, the influence of acid properties of Hβ zeolites on its catalytic ability for the thiophene alkylation, xylene alkylation and hexene oligomerization was investigated. The results showed that the acidity of the Hβ zeolite was increased with the decrease of Si/Al2 ratio, but its catalytic ability was not always increased. In fact, it reached the maximal catalytic ability at Si/Al2 ratio of 66, and under the reaction conditions of 60 ℃, 1.5 MPa, WHSV 3.0 h^-1 and time on stream 2 h. At the ratio, the conversion of thiophene, xylene, and oligomerized hexene were 96.6%, 2.7% and 2.8%, respectively. An optimal Si/Al2 ratio exists for the catalytic performance of Hβ zeolite. By investigating the coke deposition of the used Hβ zeolite catalysts, it has been found that the optimal Si/Al2 ratio is attributed to the combined effect of the carbocation activation capability and the hydrogen transformation capability of the Hβ zeolite catalyst.  相似文献   

2.
In situ catalytic conversion of biomass fast pyrolysis vapors was carried out on HZSM-5 with varying Si/Al ratios(ranging from 20 to 300) at 450 °C. The effects of Si/Al ratios of HZSM-5 zeolites on the distribution of biomass fast pyrolysis products and carbon deposits on catalysts were investigated. It was quite remarkable that after in situ catalytic conversion the amount of light phenols and hydrocarbons increased significantly while that of heavy phenols decreased a lot. Besides, the yield of cyclopentenones with relatively low oxygen content generally increased. It also indicated that as the Si/Al ratios of HZSM-5 increased, the amount of hydrocarbons and light phenols was found to drop greatly. The amount of carbon deposits was found to be around 8.5% with the exception of HZSM-5 with the Si/Al ratio of 300,which is much lower. Moreover, the carbon deposits yield dropped gradually with increasing Si/Al ratios of HZSM-5.Calcination of spent catalysts at 600 °C helped to restore the catalytic activity to a large extent despite a relatively lower efficiency of deoxygenation. Results indicated that HZSM-5 with relatively high acidity displayed great catalytic performance.  相似文献   

3.
Ethylene oligomerization using ZSM-5 zeolite was investigated to study the role of Bronsted acid sites in the formation of higher hydrocarbons. The oligomerization of olefins, dependent on the acidity of ZSM-5 zeolite, is an important step in the conversion of natural gas to liquid fuels. The framework Si/Al ratio reflects the number of potential acid sites and the acid strength of the ZSM-5 catalyst. ZSM-5 with the mole ratio SiO2/Al2O3 equal to 30 was dealuminated for different periods of time according to the acidic ion-exchange method to produce ZSM-5 with various Si/Al ratios. The FT-IR analysis revealed that the integrated framework aluminum band, non-framework aluminum band, and silanol groups areas of the ZSM-5 zeolites decreased after being dealuminated. The performance of the dealuminated zeolite was tested for ethylene oligomerization. The results demonstrated that the dealumination of ZSM-5 led to higher ethylene conversion, but the gasoline selectivity was reduced compared to the performance  相似文献   

4.
The framework and thickness of synthesized ZSM-5 membranes were characterized using static and dynamic adsorption methods. It is shown that the adsorptive properties of the membranes are the same as ZSM-5 zeolite, the average thickness of the membranes was 13 μm calculated from the adsorptive ability, which matched very well with the result measured by scanning electron micrograph. The results also shown that zeolite membranes have greated adsorptive ability than zeolite powders. The high Si/Al rate zeolite membranes have selective ability on ethanol/water, and this interpreted the separation of ethanol-water mixtures with the membranes.  相似文献   

5.
H-ZSM-5 zeolite was synthesized by hydrothermal method.The effects of different synthesis parameters,such as hydrothermal crystallization temperature(170-190 C) and Si/Al molar ratio(100-150),on the catalytic performance of the dehydration of methanol to dimethyl ether(DME) over the synthesized H-ZSM-5 zeolite were studied.The catalysts were characterized by N 2 adsorption-desorption,XRD,NH 3-TPD,TGA/DTA,and SEM techniques.The full factorial design of experiments was applied to the synthesis of H-ZSM-5 zeolite and the effects of synthesis conditions and their interaction on the yield of DME as the response variable were determined.Analysis of variance showed that two variables and their interaction significantly affected the response.According to the experimental results,the optimized catalyst prepared at 170 C with the Si/Al molar ratio of 100 showed the best catalytic performance among the tested H-ZSM-5 zeolite.  相似文献   

6.
Ethylene oligomerization using ZSM-5 zeolite was investigated to study the role of Broensted acid sites in the formation of higher hydrocarbons,The oligomeriztion of olefins,dependent on the acidity of ZSM-5 zeolite ,is an important step in the conversion of natural gas to liquied fuels,The framework Si/Al ratio reflects the number of potential acid sites and the acid strength of the ZSM-5 catalyst,ZSM-5 with the mole ratio SiO2/Al2O3 equal to 30 was dealuminated for different periods of time according to the acidic ion-exchange method to produce ZSM-5 with various Si/Al ratios,The FT-IR analysis revealed that the integrated framework aluminum band,non-framework aluminum band,and silanol groups areas of the ZSM-5 zeolites decreased after being dealuminated,The performanc of the dealuminated zeolite was tested for ethylene oligomerization.The results demonstrated that the dealumination of ZSM-5 led to higher ethylene conversion,but the gasoline selectivity was reduced compared to the performance of a ZSM-5 zeolite ,The characterization results revealed the amount of aluminum in the zeolitic framework,the crystallinity of the ZSM-5 zeolite,and the Si/Al ration affected the formation of Broensted acid sites,The number of the Broensted acid sites on the catalyst active sites is important in the olefin conversion to liquied hydrocarbons.  相似文献   

7.
Gas phase hydrogenation of crotonaldehyde was performed over 1 wt% Rh/ZnO-Al2O3 catalysts with various Zn/Rh atomic ratios. Monometallic Rh/Al2O3 was also prepared for comparison. The samples were prepared by the successive impregnation of Al2O3 with chlo-ride precursors of zinc and rhodium. The solids have been characterized by H2 chemisorption,temperature-programmed reduction,scanning electron microscopy,and cyclohexane dehydrogenation. Their catalytic behaviour in the gas phase crotonaldehyde hydrogenation reaction after reduction treatment in flowing hydrogen at 723 K was investigated. The relationship between catalytic activity,selectivity for crotyl alcohol,and physicochemical properties of the catalysts was examined. Results obtained showed that the presence of Zn clearly promotes the hydrogenation of the carbonyl bond. The catalyst with Zn/Rh atomic ratio of 5 displayed good catalytic stability and the highest selectivity for crotyl alcohol(70%) along with alloy formation.  相似文献   

8.
A natural CXN zeolite (stilbite, type code-STI) discovered in China was modified with NH4^ exchange by using ammonium salt and calcinations (procedure Ⅰ), or with NH4 exchange followed by treatment with acid (procedure Ⅱ). The coordination state of Si and A1 atoms in the framework, the property of ion exchange, and the adsorption of the H-STI zeolite samples prepared by different modification procedure were investigated with XRD,EDX,^29Si and ^27Al MAS NMR, Ag^ ion exchange and Ne adsorption. The results of the investigations indicate that different procedure of the modification made variety on the distribution of the framework Si atoms and A1 atoms,the content of non-framework aluminum, and the blocking channels and the shielding effect to the positions of the exchangeable cations. The H-STI zeolite prepared by the procedure Ⅱ possesses high ion exchange capacity, open and perfect pore system, and high thermal stability.  相似文献   

9.
Thin-film zeolite-filled silicone/PVDF composite membranes were fabricated by incorporating zeolite particles into PDMS(poly(dimethylsiloxane)) membranes.The morphology of zeolite particles and zeolite filled silicone composite membranes were characterized by SEM.The zeolite-filled PDMS/PVDF composite membranes were applied for the pervaporation of ethanol/water mixtures and showed higher flux compared with that reported in literatures.The effect of zeolite loading and Si/Al ratio of zeolite particles on...  相似文献   

10.
One type of ZSM-5 zeolite with large partical size was prepared and characterized by XRD, SEM, N2 adsorption-desorption, XRF, Py-IR and NH3-TPD techniques. Effects of ammonium exchange and SiO2/Al2O3 molar ratios on the reaction of methanol to propylene (MTP) over Na-ZSM-5 and H-ZSM-5 zeolites have been studied in a fixed-bed flow reactor under the operating conditions of T = 500 °C, P = 1 atm, and WHSV = 6 h-1. Ammonium exchange led to a rapid decrease in Na content for Na-ZSM-5 zeolite. The reaction results indicated that Na-ZSM-5 and H-ZSM-5 with different SiO2/Al2O3 molar ratios all exhibited high activity for methanol conversion. Ammonium exchange and the decreased SiO2/Al2O3 molar ratio of ZSM-5 zeolite led to an increase both in strong acid sites and weak acid sites. Na-ZSM-5 with high SiO2/Al2O3 molar ratio was favorable for the formation of propylene. The highest propylene selectivity (45.9%) was obtained over Na-ZSM-5 zeolite catalyst with SiO2/Al2O3 molar ratio of 220.  相似文献   

11.
Introduction Oxygen and nitrogen have been produced tradition-ally by cryogenic distillation of air. Methods for the non-cryogenic separation based on selective adsorption have been developed and commercialized since the 1970s and have led to a cost-effective process for this important separation.1 Low-silica zeolites are important materials for producing oxygen by selective adsorption of nitrogen. In 19891990, a new generation of lith-ium-based adsorbents was developed.2,3 Highly lithium exc…  相似文献   

12.
Facile fabrication of well‐intergrown, oriented zeolite membranes with tunable chemical properties on commercially proven substrates is crucial to broadening their applications for separation and catalysis. Rationally determined electrostatic adsorption can enable the direct attachment of a b‐oriented silicalite‐1 monolayer on a commercial porous ceramic substrate. Homoepitaxially oriented, well‐intergrown zeolite ZSM‐5 membranes with a tunable composition of Si/Al=25–∞ were obtained by secondary growth of the monolayer. Intercrystallite defects can be eliminated by using Na+ as the mineralizer to promote lateral crystal growth and suppress surface nucleation in the direction of the straight channels, as evidenced by atomic force microscopy measurements. Water permeation testing shows tunable wettability from hydrophobic to highly hydrophilic, giving the potential for a wide range of applications.  相似文献   

13.
The structures of alkali‐exchanged faujasite (X–FAU, X = Li+ or Na+ ion) and ZSM‐5 (Li–ZSM‐5) zeolites and their interactions with ethylene have been investigated by means of quantum cluster and embedded cluster approaches at the B3LYP/6‐31G(d, p) level of theory. Inclusion of the Madelung potential from the zeolite framework has a significant effect on the structure and interaction energies of the adsorption complexes and leads to differentiation of different types of zeolites (ZSM‐5 and FAU) that cannot be drawn from a typical quantum cluster model, H3SiO(X)Al(OH)2OSiH3. The Li–ZSM‐5 zeolite is predicted to have a higher Lewis acidity and thus higher ethylene adsorption energy than the Li–FAU zeolites (16.4 vs. 14.4 kcal/mol), in good agreement with the known acidity trend of these two zeolites. On the other hand, the cluster models give virtually the same adsorption energies for both zeolite complexes (8.9 vs. 9.1 kcal/mol). For the larger cation‐exchanged Na–FAU complex, the adsorption energy (11.6 kcal/mol) is predicted to be lower than that of Li–FAU zeolites, which compares well with the experimental estimate of about 9.6 kcal/mol for ethylene adsorption on a less acidic Na–X zeolite. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 333–340, 2003  相似文献   

14.
The grafting reaction of tetramethyltin on the surface of ZSM‐5 zeolite (Si:Al = 55.0) was studied under vacuum conditions, and the chemical compositions, structure and properties of the resulting solid were characterized by in situ FTIR, ICP, XRD, XPS, UV–vis DRS, temperature programmed decomposition (TPD) and N2 adsorption. The results show that the reaction occurs on the surface of ZSM‐5 zeolite at 223 K without destroying the zeolite framework. The BET surface area and the pore volume of the zeolite decrease and the surface properties change; however, the microporous structure is retained during the reaction and post treatment. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
27Al 3Q MAS NMR and UV/Vis spectroscopy with bare CoII ions as probes of Al pairs in the zeolite framework were employed to analyze the location of framework Al atoms in the channel system of zeolite ZSM‐5. Furthermore, the effect of Na+ ions together with tetrapropylammonium cation (TPA+) in the ZSM‐5 synthesis gel on the location of Al in the channel system was investigated. Zeolites prepared using exclusively TPA+ as a structure‐directing agent (i.e., in the absence of Na+ ions) led to 55–90 % of Al atoms located at the channel intersection, regardless the presence or absence of Al pairs [Al?O?(Si?O)2?Al sequences in one ring] in the zeolite framework. The presence of Na+ ions in the synthesis gel did not modify the Al location at the channel intersection (55–95 % of Al atoms) and led only to changes in i) the distribution of framework Al atoms between Al pairs (decrease) and single isolated Al atoms (increase), and ii) the siting of Al in distinguishable framework tetrahedral sites.  相似文献   

16.
A variety of phosphated zeolite H‐ZSM‐5 samples are investigated by using a combination of Fourier transfer infrared (FTIR) spectroscopy, single pulse 27Al, 29Si, 31P, 1H‐31P cross polarization (CP), 27Al‐31P CP, and 27Al 3Q magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, scanning transmission X‐ray microscopy (STXM) and N2 physisorption. This approach leads to insights into the physicochemical processes that take place during phosphatation. Direct phosphatation of H‐ZSM‐5 promotes zeolite aggregation, as phosphorus does not penetrate deep into the zeolite material and is mostly found on and close to the outer surface of the zeolite, acting as a glue. Phosphatation of pre‐steamed H‐ZSM‐5 gives rise to the formation of a crystalline tridymite AlPO4 phase, which is found in the mesopores of dealuminated H‐ZSM‐5. Framework aluminum species interacting with phosphorus are not affected by hydrothermal treatment. Dealuminated H‐ZSM‐5, containing AlPO4, retains relatively more framework Al atoms and acid sites during hydrothermal treatment than directly phosphated H‐ZSM‐5.  相似文献   

17.
The effect of the isomorphous substitution of some of the Si atoms in ZSM‐5 by Ge atoms on the Brønsted acid strength has been investigated by i) DFT calculations on cluster models of the formula ((HO)3SiO)3‐Al‐O(H)‐T‐(OSi(OH)3)3, with T=Si or Ge, and ((HO)3SiO)3‐Al‐O(H)‐Si‐(OGe(OH)3)(OSi(OH)3)2, ii) a 31P NMR study of zeolite samples contacted with trimethyl phosphine oxide probe molecules and iii) a X‐ray photoelectron spectroscopy (XPS) study of ZSM‐5 and Ge‐ZSM‐5 samples. The calculations reveal that the effect of Ge incorporation on the framework acidity strongly depends on the degree of substitution and on the exact T‐atom positions that are occupied by Ge. High Ge concentrations allow for enhanced stabilisation of the deprotonated Ge‐ZSM‐5 through structural relaxation, resulting in a slightly higher acidity as compared to ZSM‐5. This structural relaxation is not achievable in Ge‐ZSM‐5 with a low Ge content, which therefore has a slightly lower acidity than ZSM‐5. The NMR study indicates no difference between the Brønsted acidity of ZSM‐5(47) and Ge(0.09)ZSM‐5(36). Instead, evidence for the presence of a substantial amount of Ge? OH groups in the Ge‐containing samples was obtained from the NMR results, which is consistent with earlier FTIR studies. The XPS results do not point to an effect of Ge on the framework acidity of ZSM‐5(47), instead, the results can be best interpreted by assuming the presence of additional Ge? OH and Si? OH groups near the surface of the Ge(0.08)ZSM‐5(47) sample.  相似文献   

18.
The effect of weak base modification on the catalytic performance of ZSM‐5 catalyst for conversion of methanol to aromatics was investigated. The catalysts were characterized using X‐ray diffraction, X‐ray fluorescence, N2 adsorption–desorption, NH3 temperature‐programmed desorption, Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetry. The results showed that catalysts treated with weak base (NaHCO3, Na2CO3 and NH3⋅H2O) exhibited a pore structure with interconnected micropores and mesopores. The existence of mesopores was beneficial for improving the diffusion of reactants and products, and the coke deposition resistance capacity of treated catalysts was enhanced greatly. Meanwhile, compared to traditional ZSM‐5 zeolite, the ratio of Brønsted to Lewis (B/L) acid sites of ZSM‐5/NH3⋅H2O (B/L = 7.35) zeolite slightly increased but the amount of acid sites reduced, while those of ZSM‐5/NaHCO3 (B/L = 0.127) and ZSM‐5/Na2CO3 (B/L = 0.107) significantly reduced. Further, the catalyst treated with NH3⋅H2O solution was evaluated in the methanol to aromatics reaction and led to an enhanced aromatization reaction rate. The liquid hydrocarbons product distribution exhibited higher aromatic hydrocarbons yield (56.12%) and selectivity (40.28%) of benzene, toluene and xylene (BTX) with isoparaffin content reducing to 26.17%, which could be explained by appropriate B/L acid sites ratio, higher pore volumes and higher surface area.  相似文献   

19.
In this work the acid properties of a series of HZSM-12 zeolites with different Si/Al ratio were studied. The ZSM-12 crystals were synthesized by the hydrothermal method starting from a gel with the following molar composition: 20MTEA:10Na2O:x Al2O3:100SiO2:2000H2O, with x = 0.50, 0.67, 1, 1.25 and 2, respectively. The gels were crystallized at 140C for 6 days, then washed, dried and calcined to remove the MTEA template. The samples were ion-exchanged with an ammonium chloride solution and calcined again to obtain the zeolites in the acid form. The materials thus obtained were characterized by XRD, SEM, BET, TG and n-butylamine adsorption. The Si/Al ratio in the reaction mixture affects the amount of zeolite produced and the size of the particles. The XRD analysis indicated that the ZSM-12 zeolite crystallizes in a pure form only with Si/Al ratio above 33. The SEM analysis showed the presence of crystallites with very well defined prismatic shapes. The removal of the MTEA of the pores of the ZSM-12 by TG indicated that there are two kinds of internal sites occupied by MTEA inside the structure. The BET area of the ZSM-12 decreases proportionally with the crystallinity of materials. The desorption of n-butylamine showed that the acid site density is proportional to aluminum content, but the Si/Al ratio shows little influence on the relative strengths of these sites.  相似文献   

20.
Zeolite crystals with cations present, such as ZSM-5, are widely used for gas sequestration, separations, and catalysis. One possible application is as an adsorbent to separate CO2 from N2 in flue gas mixtures. Typically, the zeolite framework is of a SiO2 composition, but tetravalent Si atoms can be replaced with trivalent Al atoms. This change in valence creates a charge deficit, requiring cations to maintain the charge balance. Experimental studies have demonstrated that cations enhance adsorption of polar molecules due to strong electrostatic interactions. While numerous adsorption studies have been performed for silicalite-1, the all-silica form of ZSM-5, fewer studies on ZSM-5 have been performed. Grand Canonical Monte Carlo simulations were used to study adsorption of CO2 and N2 in Na–ZSM-5 at T = 308 K, which is ZSM-5 with Na+ counter-ions present. The simulations suggest that a lower Si/Al ratio (or higher Na+ and Al content) substantially increases adsorption at low pressures. At high pressures, however, the effect of the Al substitutions is minor, because the Al?/Na+ sites are saturated with guest molecules. Similarly, a lower Si/Al ratio also increases the isosteric heat of adsorption at low loading, but the isosteric heats approach the silicalite-1 reference values at higher loadings. Comparison of simulations and experimental measurements of the adsorption isotherms and isosteric heats points to the importance of carefully considering the role of charge on the Na+ cations, and suggest that the balancing cations in ZSM-5, here Na+, only have partial charges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号