首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The reaction between Ru3(μ-H){μ3-C2CPh2(OH)}(CO)9 and HCCPh, carried out in the presence of HBF4 · Me2O, afforded the cluster complexes Ru3(μ-H)(μ3-CPh2CCCCPh)(CO)9 (5) and Ru33-CPhCHCC(CPh2)CHCPh}(μ-CO)(CO)8 (6), both of which were characterised by single-crystal X-ray studies.  相似文献   

2.
The reaction between AuMe(PPh3) and Ru3(μ-H)33-CBr)(CO)9 (1) affords the novel heptanuclear cluster Au4Ru33-CMe)(Br)(CO)9(PPh3)3 (2), containing an Au/Ru3/Au trigonal pyramidal cluster face-capped by two Au(PPh3) groups and a CMe ligand, together with Au2Ru3(μ-H)(μ3-CMe)(CO)9(PPh3)2 (3), formed by isolobal replacement of two of the three μ-H atoms in 1 by Au(PPh3) groups. The latter co-crystallises with the analogous μ3-CH complex, as also shown spectroscopically.  相似文献   

3.
The interaction between Cp(CO)2RePt(μ-CCHPh)(PPh3)2 (1) and Fe2(CO)9 afforded the new heterometallic μ3-vinylidene cluster CpReFePt(μ3-CCHPh)(CO)6(PPh3) (2). An X-ray diffraction study shows the complex 2 possesses a trimetallic Re-Fe-Pt chain core. The bond lengths are Re-Fe 2.8221(8), Fe-Pt 2.5813(8) Å; the Re?Pt distance is 3.3523(7) Å; the bond angle Re-Fe-Pt is 76.55(3)°. The μ3-CCHPh ligand is η1-bound to the Re and Pt atoms and η2-coordinated to the Fe atom. The CC bond length is 1.412(4) Å. The Pt atom is coordinated by the PPh3 and CO groups. Complex 2 is characterized by the IR and 1H, 13C and 31P NMR spectra.  相似文献   

4.
The compound [Os3(CO)10(μ-Cl)(μ-AuPPh3)] (2) was prepared from the reaction between [Os3(CO)10(NCMe)2] (1) and [AuClPPh3] under mild conditions. The reaction of 2 with 4-mercaptopyridine (4-pyS) ligand yielded compounds [Os3(CO)10(μ-H)(μ-SC5H4N)] (4), formed by isolobal replacement of the fragment [AuPPh3]+ by H+ and [Os3(CO)10(μ-AuPPh3)(μ-SC5H4N)] (5). [Os3(CO)10(μ-H)(μ-SC5H4N)] (4) was also obtained by substitution of two acetonitrile ligands in the activated cluster 1 by 4-pyS, at room temperature in dichloromethane. Compounds 2-5 were characterized spectroscopically and the molecular structures of 4 and 5 in the solid state were obtained by single crystal X-ray diffraction studies.  相似文献   

5.
The reaction of [Cp′Cr(CO)2(μ-SBu)]2 (1) (Cp′ = MeC5H4) with (PPh3)2Pt(PhCCPh) gives Cp′Cr(CO)2(μ-SBu)Pt(PPh3)2 (2) which could be regarded as a product of the substitution of acetylene ligand at platinum by a monomeric chromium-thiolate fragment. According to the X-ray diffraction analysis 2 contains single Cr-Pt (2.7538(15)) and Pt-S (2.294(2) Å) bonds while Cr-S bond (2.274(3) Å) is shortened in comparison with ordinary Cr-S bonds (2.4107(4)-2.4311(4) Å) in 1. The bonding between Cr-S fragment and platinum atom is similar to the olefine coordination in their platinum complexes.  相似文献   

6.
Reactions of platinum(II) chloro-phosphine complexes with Co33-CCCCCSiMe3)(μ-dppm)(CO)7 in the presence of NaOMe have given the compounds Pt{CCCC-μ3-C[Co3(μ-dppm)(CO)7]}2(dppe) (1), trans-Pt{CCCC-μ3-C[Co3(μ-dppm)(CO)7]}2(PEt3)2 (2) and trans-Pt{CCCC-μ3-C[Co3(μ-dppm) (CO)6(PPh3)]}2(PPh3)2 (3), each of which contains two Co3 clusters linked by C5 chains to the Pt centre. Electrochemical studies (CVs) show the presence of both oxidation and reduction processes, the latter probably occurring on the CCo3 cores. Ready reductive elimination of {Co3(μ-dppm)(CO)7}233-C10) occurs from 1 upon heating. The X-ray study of 3 was carried out using synchrotron radiation (Advanced Photon Source, Argonne, IL) to confirm its structure.  相似文献   

7.
Reaction of the cluster Os3(μ-H)(μ-OH)(CO)10 (1) with 1-naphthol afforded the isomeric clusters 2a and 3a with the formulae Os3(μ-H)23-1-OC10H6)(CO)9. A similar reaction with 2-naphthol, however, gave Os3(μ-H)(μ-2-OC10H7)(CO)10, 4b, and the analogue of 2a. These clusters have been structurally characterised to confirm the mode of anchoring of the naphthols.  相似文献   

8.
The structure and dynamic behavior of complex [(η5-C5H4CH3)Cr(CO)2(μ-SBu)Pt(PPh3)2] in solution was studied by multinuclear (1H, 13C, 31P) NMR spectroscopy including a phase-sensitive NOESY experiment. Increasing temperature causes rupture of the Cr-Pt bond in the three-membered ring of the complex and rotation of the S-Pt(PPh3)2 unit around the Cr-S bond line, followed by formation of a new Cr-Pt bond to close the ring. All activation parameters for this dynamic process have been determined.  相似文献   

9.
Treatment of Os(κ2-S2CNMe2)H(CO)(PPh3)2 with HSiMeCl2 or HSiCl3 gives in high yield Os(κ2-S2CNMe2)(SiMeCl2)(CO)(PPh3)2 (1) or Os(κ2-S2CNMe2)(SiCl3)(CO)(PPh3)2 (2), respectively. The crystal structures of both compounds have been determined and the Os-Si distances are 2.3672(10) Å for 1 and 2.3449(12) Å for 2. In solution, and under forcing conditions, both compounds are extraordinarily unreactive towards hydroxide ions.  相似文献   

10.
Reactions of Ru3(CO)12 with PhTeBr3 and of Re(CO)5Cl with PhTeI in benzene give the stable complexes (CO)2RuBr2(PhTeBr)2 (I) and (CO)3Re(PhTeI)33-I) (II) containing two and three ligands PhTeX (X = Br or I), respectively. The bonds between these ligands and the central metal atom are fairly shortened (on average, Ru-Te, 2.608 ?; Re-Te, 2.7554(12)-2.7634(13) ?). The Te-X bonds in the ligands PhTeBr (2.5163(5) ?) and PhTeI (2.7893(15) ?) are not lengthened appreciably. In complex II, the iodide anion is not coordinated by rhenium, yet being attached through weak secondary bonds to three Te atoms of the three ligands PhTeI.  相似文献   

11.
It was determined by ESR spectroscopy that the UV irradiation of toluene solutions containing Hg[P(O)(OPri)2 and the complex (2-C60)Os(CO)(PPh3)2(CNBut) produces six stable regioisomeric adducts of phosphoryl radicals with complexes, which are not demetallated under UV irradiation and do not dimerize in the absence of UV irradiation. This is caused by the addition of the phosphoryl radicals to the carbon atoms of fullerene localized near the metal-containing moiety. The addition of the phosphoryl radicals to (2-C70)Os(CO)(PPh3)2(CNBut) gives rise to the formation of nine stable regioisomeric radical adducts. A comparison of the composition of regioisomers of the radical adducts of C70 with the phosphoryl radicals, which were formed directly from C70 and from the radical adducts of 2-C70)Os(CO)(PPh3)2(CNBut) by the demetallation of the latter, revealed an orienting effect of the osmium-containing moiety on the addition of the phosphoryl radicals to the fullerene complex.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1968–1972, September, 2004.  相似文献   

12.
The reaction of CpTi(μ2-Me)(μ2-NPi-Pr3)(μ4-C)(AlMe2)3 with ClSnMe3 and MeO3SCF3 affords the species CpTi(μ2-Cl)(μ2-NPi-Pr3)(μ4-C)(μ2-Cl)(AlMe)(AlMe2)21 and CpTi(μ2-Me)(μ2-NPi-Pr3)(μ4-C)(μ2-O3SCF3)(AlMe)(AlMe2)22, respectively. Both 1 and 2 have been structurally characterized.  相似文献   

13.
The monoanions (η5-RC5H4)(CO)3Cr (1, R=H; 2, R=Me; 3, R=CO2Et) reacted with tetrahedral cluster FeCo23-S)(CO)9 to give single isolobal displacement products (η5-RC5H4)FeCrCo(μ3-S)(CO)8 (4, R=H; 5, R=Me; 6, R=CO2Et) in 86-89% yields, whereas monoanion (η5-RC5H4)(CO)3Cr (7, R=C(O)Me) reacted with FeCo23-S)(CO)9 to afford the expected single isolobal displacement product (η5-RC5H4)FeCrCo(μ3-S)(CO)8 (8, R=C(O)Me) in 5% yield and an unexpected square pyramidal cluster FeCo23-S)2(CO)9 (9) in 45% yield. Similarly, the dianions [η5-C5H4CH2(CH2OCH2)nCH2C5H45][(CO)3Cr]2 (10, n=1; 11, n=2; 12, n=3) reacted with two molecules of FeCo23-S)(CO)9 to produce double isolobal displacement products [η5-C5H4CH2(CH2OCH2)nCH2C5H45][FeCrCo(μ3-S)(CO)8]2 (13, n=1; 14, n=2; 15, n=3) in 32-36% yields, while treatment of dianion [η5-C5H4C(O)CH2]2[(CO)3Cr]2 (16) with two molecules of FeCo23-S)(CO)9 gave the unexpected square pyramidal cluster FeCo23-S)2(CO)9 (9) in 42% yield and the corresponding double isolobal displacement product [η5-C5H4C(O)CH2]2[FeCrCo(μ3-S)(CO)8]2 (17) in 8% yield. Products 4-6, 8, 9, 13-15 and 17 were characterized by elemental analyses, IR and 1H NMR spectroscopy, as well as for 4, 6 and 9 by X-ray diffraction techniques.  相似文献   

14.
Reaction of silver(I) halides with PPh3 in acetonitrile and then with pyridine-2-thione (pySH) chloroform (1:1:1 molar ratio) has yielded sulfur bridged dimers of general formula, [Ag2X2(μ-S-pySH)2(PPh3)2] (X = Cl, 1, Br, 2). Both these complexes have been characterized using analytical data, NMR spectroscopy and single crystal X-crystallography. The central Ag2S2 cores form parallelograms with unequal Ag–S bond distances (2.5832(8), 2.7208(11) Å) in 1 and (2.6306(4), 2.6950(7) Å) in 2, respectively. The Ag?Ag contacts of compounds 1 and 2 are 3.8425(8) and 3.8211(4) Å, respectively. The angles around Ag (in the range 87.19(2)–121.71(2)° in 1 and 87.81(2)–121.53(2)° in 2) reveal highly distorted tetrahedral geometry. There are inter dimer π–π stacking interactions between pyridyl rings (inter ring distances of 3.498 and 3.510 Å in complexes 1 and 2, respectively). The solution state 31P NMR spectroscopy has shown the existence of both monomers and dimers. The studies reveal relatively weaker intramolecular –NH?Cl hydrogen bonding in case of AgCl vis-à-vis that in CuCl which favored both a monomer and a dimer with AgCl, and only a monomer with CuCl.  相似文献   

15.
Novel anhydrous trinuclear 3-oxo complexes of Cr(III), Cr3(3-O)(CF3COO)6(CH3COOH)2(CF3COO) (I) and of Cr(III,III,II), Cr3(3-O)(CF3COO)6(CH3COOH)2(THF) (II) (where THF is (CH2)4O) are synthesized by anodic dissolution of metallic chromium in solutions of trifluoroacetic acid in acetonitrile and in tetrahydrofuran and their structures are studied by X-ray diffraction analysis. Complex I forms orthorhombic crystals with space group Pna21, a = 9.778(1) , b = 16.042(2) , c = 22.851(4) , Z = 4, R 1 = 0.0332; complex II crystallizes in monoclinic system: space group P21/c, a = 9.866(1) , b = 17.895(2) , c = 21.167(4) , = 100.75(2)°, Z = 4, R = 0.0422. The average Cr-(3-O) distances in compounds I and II are almost equal (1.943(3) and 1.927(3) ). An average length of the Cr-O bond in octahedral surrounding of metal atoms is different in complexes I and II (1.985(4) and 2.003(3) , respectively), which is specified by different oxidation states of the metal atom. The CrCr distances lie in an interval of 3.366(1)–3.337(1) .__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 4, 2005, pp. 266–272.Original Russian Text Copyright © 2005 by Glazunova, Boltalin, Troyanov.  相似文献   

16.
17.
The reaction between [Ru3(CO)10(NCMe)2] and [AuClPPh3] gave compound [Ru3(CO)10(μ-Cl)(μ-AuPPh3)] (1) in quantitative yield under very mild conditions. The reaction of 1 with 4-mercaptopyridine (4-pyS) using ultrasonic reaction conditions gave the heteronuclear compound [Ru3(CO)10(μ-AuPPh3)(μ-SC5H4N)] (2) in moderate yield. There was no spectroscopic evidence that indicates the formation of the hydride isolobal analog in this reaction. The homonuclear cluster [Ru3(CO)8(μ-H)(μ-SC5H4N)(μ-dppe)] (3) was prepared by a selective reaction employing the ruthenium-diphosphine derivative [Ru3(CO)10(μ-dppe)] (dppe = 1,2-bis(diphenylphosphine)ethane) with 4-pyS in THF solution. The isolobal analog to compound 3, compound [Ru3(CO)8(μ-AuPPh3)(μ-SC5H4N)(μ-dppe)] (4) was synthesized by the reaction between compound 2 and dppe in refluxing dichloromethane. Compounds 1-4 were characterized in solution by spectroscopic methods and the molecular structure of compounds 2 and 3 in the solid state was obtained by single crystal X-ray diffraction studies.  相似文献   

18.
New cluster complexes [W3S4(Acac)3(PPh3)3]PF6 · 0.5CHCl3 (Acac = CH3C(O)CHC(O)CH3) (I) and [W3S4(Hfac)3(PPh3)2Br] · 2CHCl3 (Hfac = CF3C(O)CHC(O)CF3) (II) were synthesized. Their molecular and crystal structures were determined by X-ray diffraction. The cis-cis type of coordination of acetylacetonate and hexafluoroacetylacetonate ligands in I and II, respectively, was established, and the PPh3 ligands were found in the trans-positions with respect to the “capping” sulfide ligand (μ3-S).  相似文献   

19.
20.
Oxo/hydoxo zirconium(IV) complex of the general formula [Zr63-O)43-OH)4(OOCCH2tBu)92-OH)3]2 has been isolated, when Zr(OiPr)4 reacted with a 2-fold excess of 3,3-dimethylbutyric acid. Single crystal X-ray diffraction data, collected at 103 and 153 K, showed that the studied compound crystallizes in hexagonal system (P63/m (no. 176)). Structure consists of dimers composed of [Zr63-O)43-OH)4(OOCCH2tBu)9] sub-units, linked by six μ2-OH bridges. Infrared spectroscopic studies proved the presence of hydroxo groups in the structure of studied clusters and formation of different types of oxo/hydroxo bridges. The application of variable temperature infrared spectroscopy and differential scanning calorimetry revealed that the structure of this complex undergoes the phase transitions at 143–183 and 203–293 K. Comparison of spectral and crystallographic data suggests that these phase transitions might be related to changes in the strength of Zr–O bonds of μ2-OH bridges linking complex sub-units, and change in symmetry of the crystal lattice (from hexagonal to trigonal). Analysis of thermogravimetric data showed that decomposition of [Zr63-O)43-OH)4(OOCCH2tBu)92-OH)3]2 proceeds with complete conversion to ZrO2 (monoclinic form) between 603 and 803 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号