首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
(Z)-1,6-Anhydro-3-deoxy-4-methylsulfanyl-3-[(methylsulfanyl)methylene]-β-D-erythro-hexopyranos-2-ulose (1) reacted with diethyl malonate, 1,3-diketones, N-aryl-3-oxobutyramides and dialkyl 3-oxoglutarate, respectively, in the presence of potassium carbonate and crown ether to yield diethyl 2-(1,6-anhydro-4-methylsulfanyl—D-arabino-hex-2-ulopyranos-3-ylmethylene) malonate (2), 1-{(1R,2S,8S,9R)-2-hydroxy-4-methyl-8-methylthio-3,11,12- trioxatricyclo7.2.1.02,7dodeca-4,6-dien-5-yl} ethanone (3), (1R,2S,12S,13R)-2-hydroxy-12-methylthio-3,15,16-trioxatetracyclo[11.2.1. 02,11. 04,9] hexadeca- 4(9),10-dien-8-one (4), (1R,8S,9R)-5-acetyl-3-aryl-8-methylthio-11,12-dioxa- 3-azatricyclo-[7.2.1.02,7]dodeca-2(7),5-dien-4-ones (5,6) and dialkyl (1R,8S,-9R)-4-hydroxy-8-methylthio-11,12-dioxatricyclo[7.2.1.02,7]dodeca-2(7),3,5-triene-3,5-dicarboxylates (7,8), respectively.  相似文献   

2.
( all-E)-12′-Apozeanthinol, Persicaxanthine, and Persicachromes Reexamination of the so-called ‘persicaxanthins’ and ‘persicachromes’, the fluorescent and polar C25-apocarotenols from the flesh of cling peaches, led to the identification of the following components: (3R)-12′-apo-β-carotene-3,12′-diol ( 3 ), (3S,5R,8R, all-E)- and (3S,5R,8S,all-E)-5,8-epoxy-5,8-dihydro-12′-apo-β-carotene-3,12′-diols (4 and 5, resp.), (3S,5R,6S,all-E)-5,6-epoxy-5,6-dihydro-l2′-apo-β-carotene-3,12′-diol =persicaxanthin; ( 6 ), (3S,5R,6S,9Z,13′Z)-5,6-dihydro-12′apo-β-carotene-3,12′-diol ( 7 ; probable structure), (3S,5R,6S,15Z)-5,6-epoxy-5,6-dihydro-12′-apo-β-carotene-3,12′-diol ( 8 ), and (3S,5R,6S,13Z)-5,6-epoxy-5,6-dihydro-12′-apo-β-carotene-3,12′-diol ( 9 ). The (Z)-isomers 7 – 9 are very labile and, after HPLC separation, isomerized predominantly to the (all-E)-isomer 6 .  相似文献   

3.
The action of N-bromosuccinimide (NBS) and water on (Z, Z)-1,5-cyclooctadiene (1) results in the formation ofendo,endo-2,5-dibromo-9-oxabicyclo [4.2.1]nonane (2),endo,endo-2,6-dibromo-9-oxabicyclo[3.3.1]nonane (3),trans-6-bromo-(Z)-cycloocten-5-ol (4a),endo-6-bromo-cis-bicyclo[3.3.0]octan-2-ol (5a), andtrans-5,6-dibromo-(Z)-cyclooctene (6).2 and3 are considered to be produced from intermediary4a via transanular participation of the hydroxyl group.5a is formed in a result of transanular double bond participation.The reaction of1 withNBS and methanol similarly produces2, 3,trans-6-bromo-5-methoxy-(Z)-cyclooctene (4b),endo-6-bromo-2-methoxy-cis-bicyclo-[3.3.0]octane (5b), and6.

4. Mitt.:G. Haufe, M. Mühlstädt undJ. Graefe, Mh. Chem.108, 1431 (1977).

2 Aus der Dissertation zur Promotion A vonG. Haufe, Karl Marx-Universität Leipzig, 1975.  相似文献   

4.
Absolute Configuration of Antheraxanthin, ‘cis-Aritheraxanthin’ and of the Stereoisomeric Mutatdxanthins The assignement of structure 2 to antheraxanthin (all-E)-(3 S, 5 R, 6 S, 3′ R)-5,6-epoxy-5,6-dihydro-β,β-carotene-3,3′-diol and of 1 to ‘cis-antheraxanthin’ (9Z)-(3 S, 5 R, 6 S, 3′ R)-5,6-epoxy-5,6-dihydro-β,β-carotene-3,3′-diol is based on chemical correlation with (3 R, 3′ R)-zeaxanthin and extensive 1H-NMR. measurements at 400 MHz. ‘Semisynthetic antheraxanthin’ ( = ‘antheraxanthin B’) has structure 6 . For the first time the so-called ‘mutatoxanthin’, a known rearrangement product of either 1 or 2 , has been separated into pure and crystalline C(8)-epimers (epimer A of m.p. 213° and epimer B of m.p. 159°). Their structures were assigned by spectroscopical and chiroptical correlations with flavoxanthin and chrysanthemaxanthin. Epimer A is (3 S, 5 R, 8 S, 3′ R)-5,8-epoxy-5,8-dihydro-β,β-carotene-3,3′-diol ( 4 ; = (8 S)mutatoxanthin) and epimer B is (3 S, 5 R, 8 R, 3′ R)-5,8-epoxy-5,8-dihydro-β,β-carotene-3,3′-diol ( 3 ; = (8 R)-mutatoxanthin). The carotenoids 1 – 4 have a widespread occurrence in plants. We also describe their separation by HPLC. techniques. CD. spectra measured at room temperature and at ? 180° are presented for 1 – 4 and 6 . Antheraxanthin ( 2 ) and (9Z)-antheraxanthin ( 1 ) exhibit a typical conservative CD. The CD. Spectra also allow an easy differentiation of 6 from its epimer 2 . The isomeric (9Z)-antheraxanthin ( 1 ) shows the expected inversion of the CD. curve in the UV. range. The CD. spectra of the epimeric mutatoxanthins 3 and 4 (β end group) are dissimilar to those of flavoxanthin/chrysanthemaxanthin (ε end group). They allow an easy differentiation of the C (8)-epimers.  相似文献   

5.
Biotransformation of (±)‐threo‐7,8‐dihydroxy(7,8‐2H2)tetradecanoic acids (threo‐(7,8‐2H2)‐ 3 ) in Saccharomyces cerevisiae afforded 5,6‐dihydroxy(5,6‐2H2)dodecanoic acids (threo‐(5,6‐2H2)‐ 4 ), which were converted to (5S,6S)‐6‐hydroxy(5,6‐2H2)dodecano‐5‐lactone ((5S,6S)‐(5,6‐2H2)‐ 7 ) with 80% e.e. and (5S,6S)‐5‐hydroxy(5,6‐2H2)dodecano‐6‐lactone ((5S,6S)‐5,6‐2H2)‐ 8 ). Further β‐oxidation of threo‐(5,6‐2H2)‐ 4 yielded 3,4‐dihydroxy(3,4‐2H2)decanoic acids (threo‐(3,4‐2H2)‐ 5 ), which were converted to (3R,4R)‐3‐hydroxy(3,4‐2H2)decano‐4‐lactone ((3R,4R)‐ 9 ) with 44% e.e. and converted to 2H‐labeled decano‐4‐lactones ((4R)‐(3‐2H1)‐ and (4R)‐(2,3‐2H2)‐ 6 ) with 96% e.e. These results were confirmed by experiments in which (±)‐threo‐3,4‐dihydroxy(3,4‐2H2)decanoic acids (threo‐(3,4‐2H2)‐ 5 ) were incubated with yeast. From incubations of methyl (5S,6S)‐ and (5R,6R)‐5,6‐dihydroxy(5,6‐2H2)dodecanoates ((5S,6S)‐ and (5R,6R)‐(5,6‐2H2)‐ 4a ), the (5S,6S)‐enantiomer was identified as the precursor of (4R)‐(3‐2H1)‐ and (2,3‐2H2)‐ 6 ). Therefore, (4R)‐ 6 is synthesized from (3S,4S)‐ 5 by an oxidation/keto acid reduction pathway involving hydrogen transfer from C(4) to C(2). In an analogous experiment, methyl (9S,10S)‐9,10‐dihydroxyoctadecanoate ((9S,10S)‐ 10a ) was metabolized to (3S,4S)‐3,4‐dihydroxydodecanoic acid ((3S,4S)‐ 15 ) and converted to (4R)‐dodecano‐4‐lactone ((4R)‐ 18 ).  相似文献   

6.
A new dihydrobenzofuran lignan, (2R,3S)-2-(3′,4′-dimethoxyphenyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydrobenzofuran-3-methyl acetate, named as mitredrusin (1), was isolated from the leaves of Mitrephora teysmannii (Annonaceae) together with 12 known compounds including a related dihydrobenzofuran lignan: (?)-3′,4-di-O-methylcedrusin (2), four polyacetylenic acids: 13(E)-octadecene-9,11-diynoic acid (3), 13(E),17-octadecadiene-9,11-diynoic acid (4), octadeca-9,11,13-triynoic acid (5) and octadeca-17-en-9,11,13-triynoic acid (6), five lignans: (?)-eudesmin (7), (?)-epieudesmin (8), (?)-phillygenin (9), magnone A (10) and forsythialan B (11) and two megastigmans: (3S,5R,6S,7E,9R)-7-megastigmene-3,6,9-triol (12) and annoionol A (13). The chemical structures of these compounds were established on the basis of their 1-D and 2-D NMR spectroscopic data. All compounds were evaluated for their α-glucosidase inhibitory activity. Among these isolates, polyacetylenic acids 3 and 4 showed more than 20-fold much higher activity compared with that of the antidiabetic drug acarbose.  相似文献   

7.
Syntheses of Optically Active Carotenoids with 3,5,6-Trihydroxy-5,6-dihydro β-End Groups For the specification of the relative and absolute configuration in carotenoids with 3,5,6-trihydroxy-5-6-dihydro β-end groups, several ionone derivatives and carotenoids bearing this end group were synthesized. Acid-catalyzed hydrolysis of (3S,5S,6R)– acetoxy-5,6-epoxy-5,6-dihydro-β-ionone ( 7 ) and of its (3S,5R,6S)-isomer ( 13 ) gave the diols 8 and 15 , respectively, with exclusive inversion at c(5) (Scheme 2). Compared to this, mild acid hydrolysis of caroten-5-6-expoxides in the presence of H2O resulted in the formation of 5,6-diols with either inversion or retention of the configuration at C(6) (Scheme 3). Spectroscopic data allowed us to distinguish the relative configurations (3R*,5S*,6S*) (see A ), (3R*,5R*,6R*) (see B ), (3R*,5S*,6R*) (see C ), and (3R*,5R*,6S*) (see D ), of the 3,5,6-trihydroxy-5-6-dihydro β-end groups. Syntheses of the optically active carotene-hexols 20 and 21 and comparison with published data led to a revision of the structure of mectrazanthin (now formulated as 20 ), heteroxanthin (now formulated as 28 ), and further carotenoids with 3,5,6-trihydroxy end groups.  相似文献   

8.
The thioformimidates4, which may be obtained by S-alkylation of the thioformamides3, react with chloroacetylchloride/triethylamine to yield the (3R, 4S/3S, 4R)-3-chloro-4-methylthio-2-azetidinones5. Dehalogenation of5 leads to6, which undergoes ring closure by the action of mercuric oxide. Treatment of8, which may be synthesized by chlorolysis of7, with triethylamine gives also the title compounds9.
  相似文献   

9.
Stereoisomeric Sinensiaxanthins and Sinensiachromes: Separation and Absolute Configuration The so-called sinensiaxanthins and sinensiachromes, important apocarotenols from various fruits, have been separated into 2 and 4 stereoisomers, respectively, and their absolute configurations have been determined: (3S,5R,6S)-5,6-epoxy-5,6-dihydro-10′-apo-β-carotene-3,10′-diol ( 2 ), its (9Z)-stereoisomer 7, the (8R)- and (8S)-epimers of (3S, 5R)-5,8-epoxy-5,8-dihydro- 10′ -apo-β-carotene-3, 10′-diol ( 4 and 5 ), and their (9Z)-stereoisomers 3 and probably 6. Thus, sinensiaxanthins are cleavage products from (Z/E)-isomeric antheraxanthins or violaxanthins (scission at C(9′)–C(10′)) and sinensiachromes analogously from mutatoxanthins or auroxanthins.  相似文献   

10.
Synthesis and Chirality of (5R, 6R)-5,6-Dihydro-β, ψ-carotene-5,6-diol, (5R, 6R, 6′R)-5,6-Dihydro-β, ε-carotene-5,6-diol, (5S, 6R)-5,6-Epoxy-5,6-dihydro-β,ψ-carotene and (5S, 6R, 6′R)-5,6-Epoxy-5,6-dihydro-β,ε-carotene Wittig-condensation of optically active azafrinal ( 1 ) with the phosphoranes 3 and 6 derived from all-(E)-ψ-ionol ( 2 ) and (+)-(R)-α-ionol ( 5 ) leads to the crystalline and optically active carotenoid diols 4 and 7 , respectively. The latter behave much more like carotene hydrocarbons despite the presence of two hydroxylfunctions. Conversion to the optically active epoxides 8 and 9 , respectively, is smoothly achieved by reaction with the sulfurane reagent of Martin [3]. These syntheses establish the absolute configurations of the title compounds since that of azafrin is known [2].  相似文献   

11.
Aervalanata possesses various useful medicinal and pharmaceutical activities. Phytochemical investigation of the plant has now led to the isolation of a new 2α,3α,15,16,19-pentahydroxy pimar-8(14)-ene diterpenoid (1) together with 12 other known compounds identified as β-sitosterol (2), β-sitosterol-3-O-β-D-glucoside (3), canthin-6-one (4), 10-hydroxycanthin-6-one (aervine, 5), 10-methoxycanthin-6-one (methylaervine, 6), β-carboline-1-propionic acid (7), 1-O-β-D-glucopyranosyl-(2S,3R,8E)-2-[(2′R)-2-hydroxylpalmitoylamino]-8-octadecene-1,3-diol (8), 1-O-(β-D-glucopyranosyl)-(2S,3S,4R,8Z)-2-[(2′R)-2′-hydroxytetracosanoylamino]-8(Z)-octadene-1,3,4-triol (9), (2S,3S,4R,10E)-2-[(2′R)-2′-hydroxytetracosanoylamino]-10-octadecene-1,3,4-triol (10), 6′-O-(4″-hydroxy-trans-cinnamoyl)-kaempferol-3-O-β-D-glucopyranoside (tribuloside, 11), 3-cinnamoyltribuloside (12) and sulfonoquinovosyldiacylglyceride (13). Among these, six compounds (813) are reported for the first time from this plant. Cytotoxicity evaluation of the compounds against five cancer cell lines (CHO, HepG2, HeLa, A-431 and MCF-7) shows promising IC50 values for compounds 4, 6 and 12.  相似文献   

12.
The hexopyranosid‐2‐ylidenemalononitrile 1 reacted with phenyl isothiocyanate in the presence of triethylamine to furnish (2R,4aR,6S,10bS)‐8‐amino‐4a,6,10,10b‐tetrahydro‐6‐methoxy‐2‐phenyl‐10‐phenylimino‐4H‐thiopyrano[3′,4′:4,5]pyrano[3,2‐d][1,3]dioxine‐7‐carbonitrile (2). Starting from 1, cyclization with sulphur and diethylamine yielded (2R,4aR,6S,9bR)‐8‐amino‐4,4a,6,9b‐tetrahydro‐6‐methoxy‐2‐phenylthieno[2′,3′:4,5]pyrano[3,2‐d][1,3]dioxine‐7‐carbonitrile (3), which could be transformed into the corresponding aminomethylenamino derivative 4 by treatment with triethyl orthoformate and ammonia. Intramolecular cyclization of 4 to yield (2R,4aR,6S,11bR)‐4,4a,6,11b‐tetrahydro‐6‐methoxy‐2‐phenyl[1,3]dioxino[4″,5″:5′,6′]pyrano[3′,4′:4,5]thieno [2,3‐d]pyrimidin‐7‐amine (5) was achieved by using NaH as base. (2R,4aR,6S,9bS)‐8‐Amino‐4a,6,9,9b‐tetrahydro‐6‐methoxy‐9‐(4‐methylphenyl‐sulfonyl)‐2‐phenyl‐4H‐[1,3]dioxino[4′,5′:5,6]pyrano[4,3‐b]pyrrole‐7‐carbonitrile (6) was prepared by treatment of compound 1 with tosylazide and triethylamine.  相似文献   

13.
Cucurbitaxanthin A (= (3S,5R,6R,3′R)-3,6-epoxy-5,6-dihydro-β,β- carotene-5,3′-diol; 5 ), cucurbitaxanthin B (= (3S,5R,6R,3′S,5′R,6′S)-3,6,5′, 6′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene-5,3′-diol; 6 ), the epimeric cucurbitachromes 1 and 2 (= (3S,5R,6R,3′S,5′R,8′S)- and (3S,5R,6R,3′S,5′R,8′R)-3,6,5′, 8′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene-5,3′-diol, resp.; 9/10 ), cycloviolaxanthin (= (3S,5R,6R,3′S,5′R,6′R)-3,6,3′, 6′-diepoxy-5,6,5′,6′-tetrahydro-β,κs-carotene-5,5′-diol; 8 ), and capsanthin 3,6-epoxide (= (3S,5R,6R,3′S,5′R)-3,6-epoxy-5,6-dihydro ?5,3′-dihydroxy-β,κ-caroten-6′-one; 7 ) were isolated from red spice paprika (Capsicum annuum var. longum) and characterized by their 1H- and 13C-NMR, mass, and CD spectra.  相似文献   

14.
The new coumarin 1, yuganin A (7-methoxy-8-((1S,2S)-1,2,3-trihydroxy-3-methylbutyl)-2H-chromen-2-one) along with nine known coumarins, heraclenol 3′-O-β-D-glucopyranoside (2), oxypeucedanin hydrate 3′-O-β-D-glucopyranoside (3), heraclenol (4), oxypeucedanin hydrate (5), osthole (6), oxypeucedanin (7), heraclenin (8), isoimperatorin (9), imperatorin (10) and the disaccharide sucrose (11), have been isolated from the roots of Prangos pabularia, and the structures of these isolated compounds were elucidated by spectroscopic means, especially, UV, HR-ESIMS, and 1D and 2D NMR spectroscopy. Furthermore, the anti-melanogenic effect of yuganin A and its inhibitory effect on B16 cells were evaluated. Yuganin A may be useful in the treatment of hyperpigmentation and as a skin-whitening agent in the cosmetics industry.  相似文献   

15.
Epoxides of fatty acids are hydrolyzed by epoxide hydrolases (EHs) into dihydroxy fatty acids which are of particular interest in the mammalian leukotriene pathway. In the present report, the analysis of the configuration of dihydroxy fatty acids via their respective hydroxylactones is described. In addition, the biotransformation of (±)‐erythro‐7,8‐ and ‐3,4‐dihydroxy fatty acids in the yeast Saccharomyces cerevisiae was characterized by GC/EI‐MS analysis. Biotransformation of chemically synthesized (±)‐erythro‐7,8‐dihydroxy(7,8‐2H2)tetradecanoic acid ((±)‐erythro‐ 1 ) in the yeast S. cerevisiae resulted in the formation of 5,6‐dihydroxy(5,6‐2H2)dodecanoic acid ( 6 ), which was lactonized into (5S,6R)‐6‐hydroxy(5,6‐2H2)dodecano‐5‐lactone ((5S,6R)‐ 4 ) with 86% ee and into erythro‐5‐hydroxy(5,6‐2H2)dodecano‐6‐lactone (erythro‐ 8 ). Additionally, the α‐ketols 7‐hydroxy‐8‐oxo(7‐2H1)tetradecanoic acid ( 9a ) and 8‐hydroxy‐7‐oxo(8‐2H1)tetradecanoic acid ( 9b ) were detected as intermediates. Further metabolism of 6 led to 3,4‐dihydroxy(3,4‐2H2)decanoic acid ( 2 ) which was lactonized into 3‐hydroxy(3,4‐2H2)decano‐4‐lactone ( 5 ) with (3R,4S)‐ 5 =88% ee. Chemical synthesis and incubation of (±)‐erythro‐3,4‐dihydroxy(3,4‐2H2)decanoic acid ((±)‐erythro‐ 2 ) in yeast led to (3S,4R)‐ 5 with 10% ee. No decano‐4‐lactone was formed from the precursors 1 or 2 by yeast. The enantiomers (3S,4R)‐ and (3R,4S)‐3,4‐dihydroxy(3‐2H1)nonanoic acid ((3S,4R)‐ and (3R,4S)‐ 3 ) were chemically synthesized and comparably degraded by yeast without formation of nonano‐4‐lactone. The major products of the transformation of (3S,4R)‐ and (3R,4S)‐ 3 were (3S,4R)‐ and (3R,4S)‐3‐hydroxy(3‐2H1)nonano‐4‐lactones ((3S,4R)‐ and (3R,4S)‐ 7 ), respectively. The enantiomers of the hydroxylactones 4, 5 , and 7 were chemically synthesized and their GC‐elution sequence on Lipodex® E chiral phase was determined.  相似文献   

16.
Zhe Li  Ni Ma 《Natural product research》2019,33(12):1794-1797
An endophytic fungus, Chaetomium sp. YMF432, was isolated from Huperzia serrata (Thunb. ex Murray) Trev. and subjected to phytochemical investigation based on its special environment. From the extracts of fermentation solid of strain YMF 432, eight compounds including 1-O-methylemodin (1), 5-methoxy-2-methyl-3-tricosyl-1,4-benzoquinone (2), 4,8-dihydroxy-1-tetralone (3), (3β,5α,6α, 22E)-3-hydroxy-5,6-epoxy-7-one-8(14),22-dien-ergosta (4), ergosta-4,6,8(14),22-tetraen-3-one (5), β-sitostenone (6), β-sitosterol (7) and (22E,24R)-ergosta-5,7,22 -trien-3β-ol (8) were obtained. Their structures were elucidated on the basis of their spectroscopic data. These compounds were evaluated for acetylcholinesterase inhibitory activities in vitro. Compounds 1, 2, and 4 showed moderate acetylcholinesterase inhibitory activities (IC50 from 37.7 ± 1.5 to 370.0 ± 2.9 μM).  相似文献   

17.
J. Deli  P. Molnár  E. Osz  G. Tóth 《Chromatographia》2000,51(1):S183-S187
Summary In an investigation of carotenoids present in the fruits ofAsparagus falcatus capsanthin (1), capsorubin (2), 5,6-diepikarpoxanthin (7), capsanthin 5,6-epoxide (18), capsochrome (17), mutatoxanthin (19), antheraxanthin (11), and capsanthone (20) (Figure 1) have been isolated by preparative CLC and characterized by spectroscopic methods. On the basis of spectroscopic data the absolute configuration of 5,6-diepikarpoxanthin (7) was determined as 3S,5S,6S, which is identical with that occurring in samples originating from paprika andLilium. Presented at Balaton Symposium on High Performance Separation Methods, Siófok, Hungary, September 1–3, 1999  相似文献   

18.
The push‐pull activated methyl (3Z)‐4,6‐O‐benzylidene‐3‐[(methylthio)methylene]‐3‐deoxy‐α‐D‐erythro‐hexopyranosid‐2‐ulose (1) reacted with dialkyl malonate in the presence of potassium carbonate to give the alkyl (2R,4aR,6S,10bS)‐4a,6,8,10b‐tetrahydro‐6‐methoxy‐8‐oxo‐2‐phenyl‐4H‐pyrano[3′,2′:4,5]pyrano[3,2‐d][1,3]dioxine‐9‐carboxylates 2 and 3. Treatment of 1 with 3‐oxo‐N‐phenyl‐butyramide, N‐(4‐methoxy‐phenyl)‐3‐oxo‐butyramide, and 3‐oxo‐No‐tolyl‐butyramide, respectively, in the presence of potassium carbonate and 18‐crown‐6 yielded the (2R,4aR,6S,10bS)‐9‐acetyl‐7‐aryl‐4,4a,7,10b‐tetrahydro‐6‐methoxy‐2‐phenyl[1,3]dioxino‐[4′,5′:5,6]pyrano[3,4‐b]pyridin‐8(6H)‐ones 46. (2R,4aR,6S,10bS)‐4,4a,8,10b‐Tetrahydro‐6‐methoxy‐8‐oxo‐2‐phenyl‐4H‐pyrano[3′,2′:4,5]pyrano[3,2‐d][1,3]dioxine‐9‐carboxamide (7) was prepared by anellation reactions of 1 either with malononitrile or with cyanoacetamide.  相似文献   

19.
The absolute configuration of 2.2-spirobiindane-1.1-dione (2) was established as (+)-(2S) by correlation with a centrochiral key intermediate, namely by cyclization of (+)-(2R)-2-benzyl-2-methoxycarbonyl-1-indanone (9) withPPA.9 was obtained by oxidation of either methyl (+)-cis- ortrans-1-hydroxy-2-benzyl-indane-2-carboxylate (8 a, 8 b), whose absolute configurations were determined as (+)-(1S, 2R) and (1R, 2R), resp., byHoreau's method and whose optical purities by the NMR-method employing the esters with -methoxy--trifluoromethylphenyl-acetic acid. The active methyl esters8 were prepared starting from the corresponding racemic ethyl ketocarboxylate4, which on reduction afforded the stereoisomeric ethylcis- andtrans-1-hydroxyindane-2-benzyl-2-carboxylates (5 a, 5 b); their relative configurations were determined by NMR. The corresponding acids7 were resolvedvia the cinchonidine salts and obtained in high optical purity (100% fortrans, 80% forcis).Levorotatory2 was also prepared by resolution of the bis-aminoxyacetic acid derivative (via its bis-cinchonidine salt) and subsequent cleavage. [a] D max of2 was determined as ±240° (benzene) by means of a chiral shift reagent. The racemization of2 withPPA under the conditions of the asymmetric synthesis was studied.

Mit 4 Abbildungen  相似文献   

20.
Two new sesquiterpenes, namely, 1β,10β-dihydroxy-eremophil-7(11), 8-dien-12,8-olide (1) and 8,12-epoxy-1β-hydroxyeudesm-3,7,11-trien-9-one (2), together with three known sesquiterpenoids, shizukolidol (3), 4α-hydroxy-5α(H)-8β-methoxy-eudesm-7(11)-en-12,8-olide (4), and neolitacumone B (5), and two known monoterpenes, (3R,4S,6R)-p-menth-1-en-3,6-diol (6) and (R)-p-menth-1-en-4,7-diol (7), were isolated from the whole plant of Chloranthus japonicus Sieb. Their structures were elucidated on the basis of spectroscopic data analysis and comparison with those of related known compounds. Compounds 47 were isolated from this plant for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号