首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 155 毫秒
1.
塑性挤压成型阳极支撑管,采用真空浸涂法在阳极表面制备了均一、致密的氧化钇稳定的氧化锆电解质层,然后在电解质表面刷涂上阴极层,成功制备了阳极支撑型管状固体氧化物燃料电池.分别以氢气和氨气为燃料,考察了该管状固体氧化物燃料电池的电池性能.在800℃操作时,以氢气和氨气为燃料的电池最大输出功率密度分别为202和200 mW/cm2.表明氨气可以作为固体氧化物燃料电池的替代燃料.  相似文献   

2.
管状电解质支撑型固体氧化物燃料电池(SOFC)具有稳定性高、电极选择范围广、易封接等优点,很适合应用于直接碳固体氧化物燃料电池(DC-SOFC)现阶段的基础研究中。为实现管状电解质支撑型SOFC的便捷制备,本研究开发了管状YSZ(钇稳定化氧化锆)电解质支撑膜的浸渍法制备工艺。组装了电极材料为Ag-GDC(钆掺杂氧化铈)的电解质支撑型SOFC单电池。测试了单电池分别以加湿氢气和担载5%(w,质量分数)Fe的活性炭为燃料,环境空气为氧化剂的电性能。电池的开路电压接近理论值,且扫描电镜分析结果表明电解质膜致密。单电池以活性碳为燃料在800°C取得了280 m W?cm~(-2)的最大功率密度,接近其以加湿氢气为燃料的330 m W?cm~(-2)。交流阻抗谱结果表明YSZ电解质的欧姆电阻是影响电池性能的主要原因。DC-SOFC以恒电流1 A放电,运行了2.1 h,燃料利用率为36%。DC-SOFC二次装载碳燃料后的电性能几乎与初次的性能一样,表明制备的YSZ电解质支撑膜可稳定的应用于DC-SOFCs中。分析了DC-SOFC放电过程中电性能衰减的机制。  相似文献   

3.
提出了一种简单而方便的微管式固体氧化物燃料电池(MT-SOFCs)的制备新方法.首先应用改进相转化-烧结技术制备由致密电解质表皮薄层和多孔支撑层构成的高度非对称结构电解质中空纤维膜(微管),在电解质中空纤维膜的多孔支撑层内通过化学镀法沉积Ni催化剂作为电池阳极,而致密电解质表皮层直接作为电解质膜,在电解质微管外表面用浆料涂层法制备电池的多孔阴极,烧结后即得到完整的MT-SOFC.应用该方法制备了Ni-YSZ|YSZ|LSCF微管式电池,该电池以H2/空气作原料气,在800℃时最大输出功率达到159.6mWcm-2.  相似文献   

4.
用改进注浆法制备出长度为226-266mm,厚度为0.4-0.9mm,相对密度为96.7%的(ZrO2)0.92(Y2O3)0.08的电解质薄管,用SEM和交流阻抗谱研究了样品的微结构和电学性能,分析了烧结密度、晶粒和晶界对样品电学性能的影响,考察了用该电解质薄管组装的固体氧化物燃料电池的性能。结果表明:样品的致密度随烧结温度的升高而逐渐增大,样品的微结构对其电学性能有强烈的影响,样品的电学性能随烧结密度的增加而增大,晶粒电导率和晶界电导率也随烧结温度升高而得以改善,1650℃烧结的样品具有较好的烧结性能。单电池的最大开路电压和短路电流分别为0.946V和1.84A,850℃时最大输出功率为0.46W。  相似文献   

5.
固体氧化物燃料电池(SOFC)及其组元的低温制备有利于材料和电池性能的优化,降低制备成本.立方相的全致密氧化钇稳定氧化锆(YSZ)电解质是SOFC中最通用的电解质.传统的烧结工艺需要在1 400-1 450℃才能实现YSZ电解质的致密,而使用纳米粉体和三步烧结工艺可以在1 200-1 300℃得到致密电解质.氧化钪稳定...  相似文献   

6.
中温平板型固体氧化物燃料电池研究   总被引:1,自引:0,他引:1  
采用流延法制备Ni/YSZ阳极支撑体 YSZ电解质复合膜素坯.经等静压,共烧结而得到的复合膜,其YSZ电解质层的厚度在1530μm之间,面积大于100cm2.再将由柠檬酸盐法合成的Ce0.8Sm0.2O1.9(CSO)和固相法合成的La0.6Sr0.4CoO3(LSCO)相继沉积到YSZ膜上形成有CSO中间层的复合阴极,从而构成Ni/YSZ/CSO/LSCO的中温平板型固体氧化物燃料(单体)电池,其中Ni/YSZ为阳极,CSO是中间层,LSCO为阴极.以H2作燃料气,O2为氧化气,850℃下,该单电池开路电压达1.1V,最大输出功率密度0.2W/cm2.本文还对该单电池复数阻抗谱进行了分析讨论.  相似文献   

7.
制备了阳极负载型LDC-LSGM双层电解质薄膜电池.考察了单电池在分别使用甲醇和氢气两种燃料时,不同温度下的I~V性能.以甲醇为燃料,以空气为氧化剂时,800℃下的最大输出功率密度为1.07W/cm2,而使用氢气为燃料时,最大输出功率密度为1.54W/cm2.通过交流阻抗研究了造成甲醇性能降低的可能原因.结果表明,以甲醇作为燃料时,单电池性能较氢气作为燃料时低.  相似文献   

8.
采用硝酸盐-甘氨酸溶液燃烧法合成了La0.6Sr0.4Co0.2Fe0.8O3-?啄(LSCF)前驱粉体, 通过XRD、BET、FESEM及激光粒度仪等手段对粉体进行表征. 结果表明, 所合成的LSCF粉体为纯钙钛矿结构, 具有高达22.9 m2·g-1的比表面积, 粒度均匀, 平均颗粒尺寸为175 nm. 非等温烧结实验表明该粉体具有良好的低温烧结活性. 在阳极NiO-YSZ(氧化钇稳定氧化锆)负载的电解质YSZ上, 于800 ℃烧结制备LSCF阴极组成的单元电池Ni-YSZ/YSZ/LSCF, 在700 ℃下以H2作燃料时具有良好的电池性能, 最大功率密度为0.97 W·cm-2, 在0.7 V时的功率密度约达到0.83 W·cm-2. 这种无中间缓冲层的低温制备LSCF阴极方法, 简化了电池结构及其制备过程, 同时提高了电池的性能.  相似文献   

9.
唐玉宝  刘江 《物理化学学报》2010,26(5):1191-1194
采用注浆成型法制备了管状电解质支撑的固体氧化物燃料电池(SOFC),电解质材料为YSZ,阳极和阴极材料都采用银.将活性炭不加任何气体直接用作电池的燃料.电池的有效面积为2.5cm2,在800℃时给出最大功率为16mW,其开路电压随温度的变化与理论结果一致.此电池在30mA的恒电流下连续稳定运行了37h,通过电化学反应消耗了加入电池中碳燃料的42%(w),证明了电池的工作是可以自维持的.与使用石墨燃料的SOFC相比,此电池的运行稳定性得到了明显的提高,因为活性炭比石墨具有大得多的微孔率和表面积.电池运行37h后很快衰减,燃料烧结和燃料量减少造成碳表面积减小可能是衰减的主要原因.电化学阻抗谱测试结果表明电池的极化电阻在电池的总损耗中占主导.通过对电池反应机理进行分析,认为发生在阳极/电解质界面的CO电化学氧化反应和发生在碳燃料表面的Boudouard反应构成的循环维持了电池的运行,因此通过添加促进上述两个反应的催化剂,可提高电池的性能.  相似文献   

10.
采用硝酸盐-柠檬酸法合成了具有高比表面积的一系列Ni-Fe氧化物和电解质Ce0.8Sm0.2O1.9(SDC), 利用上述材料制备出固体氧化物燃料电池(SOFC)复合阳极材料Ni-Fe/SDC, 并对其微结构和相关性能进行测试. 结果表明: 该复合阳极材料与电解质SDC具有较高的热匹配性, 以其作为SOFC的阳极, 氢气为燃料, 其单电池表现出优异的性能, 700 ℃电池输出功率密度最高可达90.6 mW•cm−2.  相似文献   

11.
New 40 vol%[(Cu)–Ni]–YSZ cermet materials processed by mechanical alloying (MA) of the row powders are prepared. The powder compacts are sintered in air, hydrogen and inert (argon) atmospheres at a dilatometer and tubular furnace up to 1,350 °C. Sintering by activated surface concept (SAS) can anticipate and enhance the densification in such powders. Stepwise isothermal dilatometry (SID) sintering kinetics study is performed allowing determining kinetic parameters for Ni–YSZ and Ni–Cu–YSZ pellets. Two-steps sintering processes is indicated while Cu-bearing material features the smallest activation energy for sintering. The allied MA–SAS method is a promising route to prepare SOFC fuel cell anode materials.  相似文献   

12.
固体氧化物燃料电池(SOFC)陶瓷连接材料的低成本薄膜化制备是现在公认的技术难题。为了改善传统NiO/YSZ阳极与LaCrO3基连接材料的共烧匹配性能,将化学性质稳定的Y0.7Ca0.3Cr0.9Zn0.1O3-δ(YCCZ)连接材料创造性地引入到NiO/YSZ阳极中,制备NiO/YSZ/YCCZ(6∶4∶2,m/m/m)三相复合阳极,并进行烧结特性、微观结构、电导率、热膨胀系数等系列性能的对比测试,结果表明NiO/YSZ/YCCZ新型复合阳极具有优良的综合性能。以NiO/YSZ/YCCZ为支撑体,采用浆料浸渍法制备湿膜,1 400℃空气条件下共烧,成功制备致密La0.7Ca0.3Cr0.97O3-δ连接体薄膜。  相似文献   

13.
Data on the mid-temperature solid-oxide fuel cells (SOFC) with thin-film ZrO2-Y2O3 (YSZ) electrolyte are shown. Such a fuel cell comprises a carrying Ni-YSZ anode, a YSZ electrolyte 3–5 μm thick formed by vacuum ion-plasma methods, and a LaSrMnO3 cathode. It is shown that the use of a combined method of YSZ electrolyte deposition, which involves the magnetron deposition of a 0.5–1.5-μm thick sublayer and its pulse electron-beam processing allows a dense nanostructured electrolyte film to be formed and the SOFC working temperature to be lowered down as the result of a decrease in both the solid electrolyte Ohmic resistance and the Faradaic resistance to charge transfer. SOFC are studied by the methods of voltammentry and impedance spectroscopy. The maximum power density of the SOFC under study is 250 and 600 mW/cm−2 at temperatures of 650 and 800°C, respectively.  相似文献   

14.
Ceramic hollow fibre membranes which have an asymmetric structure have been prepared in one step, using an immersion induced phase inversion technique. With this method, membranes with a high surface area per unit volume ratio can be produced, while production cost is dramatically reduced. Yttria-stabilised zirconia (YSZ) is selected as a membrane material, as it is relatively inexpensive and has superior mechanical strength as well as oxygen ion conducting properties. Therefore, both the porous and non-porous membranes prepared from the YSZ have potential applications. For example, the porous YSZ membranes can be used for fluid separations in harsh environments where normal polymeric membranes cannot be sustained, while the non-porous YSZ membranes can be applied as a solid electrolyte in electrochemical devices such as solid oxide fuel cells, oxygen pumps and chemical gas sensors.Gas permeation analysis suggests that non-porous YSZ hollow fibre membranes can be prepared at sintering temperature of 1400 °C or greater, below which the membrane contains pores. Pore sizes of the YSZ porous membrane prepared fall into the pore size range of ultrafiltration membranes. However, the surface porosities of the membranes prepared from two-population sized particles at sintering temperatures of 1200 °C and 1400 °C are around 5000 m−1 and 300 m−1, respectively. The former is comparable to polymeric membranes, while the latter is an order of the magnitude smaller.  相似文献   

15.
溶胶-凝胶流动相异型直接甲醇燃料电池性能研究   总被引:1,自引:0,他引:1  
以掺杂石墨粉的中间相碳微球(MCMB/G)烧结管为阴极支撑体,采用浸涂工艺分别制备了扩散层和催化层并在其外表面包裹Nafion膜,制得管状异型阴极并组装成异型直接甲醇燃料电池;采用溶胶-凝胶法制备了适用于直接甲醇燃料电池的溶胶-凝胶流动相。研究了溶胶-凝胶流动相异型直接甲醇燃料电池的阻抗,考察了阴极支撑体壁厚、阴极扩散层载量、实验温度和溶胶黏度等对电池极化性能的影响。结果表明,异型电池阻抗比传统平板电池大,但活化后电池阻抗明显下降;较低的溶胶黏度和较高的工作温度有利于提高电池性能;支撑体壁厚为1.3 mm、扩散层载量为3.5 mg/cm2时的电极性能最优。  相似文献   

16.
Ni-YSZ(钇稳定氧化锆)金属陶瓷普遍被用作固体氧化物燃料电池(SOFC)的阳极材料,其氧化物浆料的性质对湿法制备的SOFC的性能具有重要影响. 通过zeta 电位分析,研究了NiO-YSZ双分散相水系浆料的稳定性. 对六种分散剂作用于NiO、YSZ 表面的zeta 电位进行研究,发现采用的阴离子分散剂和两性分散剂使NiO 和YSZ在水中带有相反电荷而引起迅速絮凝; 采用阳离子分散剂聚二烯二甲基氯化铵(PDAC)时,NiO 和YSZ因带有正电荷相互排斥而稳定分散于水中,在此基础上,加入作为SOFC阳极造孔剂的石墨,采用聚乙烯吡咯烷酮(PVP)作为石墨的分散剂,制备出了NiO-YSZ-石墨的稳定水系浆料. 采用此浆料通过注浆成型制得阳极支撑管,进而组装成SOFC单电池. 该单电池在800℃时最大功率密度达到509 mW·cm-2; 扫描电镜(SEM)分析表明电极与电解质间接触良好,阳极孔洞分布均匀.  相似文献   

17.
The work describes the methods of manufacturing single cells of solid oxide fuel cell (SOFC) with thin–film YSZ and CGO electrolytes and also with the bilayer YSZ/CGO electrolyte. Formation of YSZ and CGO films on the supporting NiO–YSZ anode of SOFC was carried out using the combined electron–ionic–plasma deposition technique. The microstructure and phase composition of the formed coatings are studied and also comparative analysis of electrochemical characteristics of single fuel cells with different electrolytes is performed. It is shown that the maximum power density of 1.35 W/cm2 at the temperature of 800°C is obtained for the cell with bilayer YSZ/CGO electrolyte. However, the highest performance at lower working temperatures (650–700°C) is characteristic for the fuel cell with single–layer CGO electrolyte; its power density is 600–650 mW/cm2.  相似文献   

18.
Zhang  Yaohui  L&#;  Zhe  Huang  Xiqiang  An  Maozhong  Wei  Bo  Su  Wenhui 《Journal of Solid State Electrochemistry》2010,15(11):2661-2665

Yttria-stabilized zirconia (YSZ) membranes were deposited onto porous NiO–YSZ anode supports by screen printing. Combined with La0.7Sr0.3MnO3–YSZ composite cathode, the prepared anode-supported solid oxide fuel cells (SOFCs) were electrochemically tested. A typical SOFC with a 30-μm-thick YSZ electrolyte membrane gave the maximum power densities (MPDs) of 0.26, 0.53, 0.78, and 1.03 W/cm2 at 650, 700, 800, and 850 °C, respectively, using hydrogen as fuel and stationary air as oxidant. Replacement of stationary air with pure oxygen flow exerted a significant positive effect on the MPDs of the cell. Using 100- and 200-ml/min oxygen as oxidants, the MPDs of the cell were enhanced 35.3% and 68.6%, respectively. Polarization analysis indicated that, at the MPD points, the electrode polarization resistances accounted for 80% of the cell total resistances.

  相似文献   

19.
Results of studies of solid-electrolyte membranes with the composition of 89 mol % ZrO2-10 mol % Sc2O3-1 mol % CeO2 obtained using the technique of slip casting on a moving tape are presented. Optimization of technological parameters of membrane casting and sintering allowed manufacturing parallel plane gastight plates with the thickness of 200–250 μm that were tested in model solid oxide fuel cells (SOFC) of planar design with standard electrodes based on nickel-containing cermets and lanthanum-strontium manganite. It is shown that though conductivity of such membranes is lower as compared to that of compacted and sintered compacted samples due to diffusion of the aluminum oxide admixture in the course of the manufacturing process, power density of SOFC is sufficiently high and reaches 430 mW/cm2 at 850°C.  相似文献   

20.
Yttria-stabilized zirconia (YSZ) membranes were deposited onto porous NiO?CYSZ anode supports by screen printing. Combined with La0.7Sr0.3MnO3?CYSZ composite cathode, the prepared anode-supported solid oxide fuel cells (SOFCs) were electrochemically tested. A typical SOFC with a 30-??m-thick YSZ electrolyte membrane gave the maximum power densities (MPDs) of 0.26, 0.53, 0.78, and 1.03?W/cm2 at 650, 700, 800, and 850?°C, respectively, using hydrogen as fuel and stationary air as oxidant. Replacement of stationary air with pure oxygen flow exerted a significant positive effect on the MPDs of the cell. Using 100- and 200-ml/min oxygen as oxidants, the MPDs of the cell were enhanced 35.3% and 68.6%, respectively. Polarization analysis indicated that, at the MPD points, the electrode polarization resistances accounted for 80% of the cell total resistances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号