首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An environmentally friendly methodology is proposed for the analysis of pesticides in soil samples based on supercritical fluid extraction (SFE) and analysis at high selectivity and sensitivity, by gas chromatography-tandem mass spectrometry (GC-MS-MS). The pesticides investigated are among the most commonly used in intensive horticulture activities comprising organochlorine and organophosphorous insecticides, triazine and acetanilide herbicides, amongst others. An experimental design approach was used for modelling SFE and optimised extraction conditions were derived for the total pesticides extraction or for specific sub-groups of interest. Pesticide residues could be detected in soils in the sub-ppb range (0.1-3.7microgkg(-1)), with quite good precision (4.2-15.7%) and extraction efficiency (80.4-106.5%). The analysis of soil samples from an intensive horticulture area in Póvoa de Varzim, north of Portugal, revealed the presence of persistent pesticides, parent compounds and degradation products among the following: endosulfan, endosulfan sulfate, dieldrin, 4,4'-DDE, 4,4'-DDD, atrazine, alachlor, metolachlor, chlorpyrifos, pendimethalin and lindane. The important features to point out are the easy interpretation of chromatograms and straightforward confirmation of analytes that greatly facilitates the analyst judgement on the contamination of the sample.  相似文献   

2.
A method based on matrix solid-phase dispersion (MSPD) has been developed for the determination of 16 organochlorine pesticides (OCs) in sludge from municipal sewage plants. Samples of lyophilized sludge were blended with alumina, placed in small columns and OCs extracted with dichloromethane assisted by sonication. Purification of the extracts was accomplished by solid-phase extraction on C18 columns and OCs were eluted with acetonitrile. Analyses were performed by gas chromatography with electron impact mass spectrometric detection in the selected ion monitoring mode (GC–MS-SIM) using deuterated OCs as internal standards. The limits of detection were between 0.03 ng/g for 4,4′-DDE and 0.7 ng/g for endrin aldehyde.

Levels of OCs were determined in sewage sludge collected from 19 water treatment plants located in the province of Madrid (Spain). In all of the analyzed samples, aldrin was the compound most often found with a mean concentration of 76 ng/g. Endosulfan-I, -BHC, 4,4′-DDE and 4,4′-DDT were also present at high concentrations, with average values ranging from 32.3 to 74.3 ng/g. OCs were detected in all of the samples, with a total concentration ranging from 52 to 528 ng/g dry weight.  相似文献   


3.
A confirmatory method for the determination of organochlorine pesticides (OCPs) and their metabolites (endrin, α-endosulfan, β-endosulfan, endosulfan sulfate, heptachlor, heptachlor epoxide, 2,4′-DDD, 4,4′-DDD, 2,4′-DDE 4,4′-DDE, 2,4′-DDT, and 4,4′-DDT) in surface waters using liquid chromatography /APCI/tandem mass spectrometry has been developed. Chromatographic separation was carried out on a ChromSpher 5 Pesticide column using a gradient elution with mobile phase 1mM ammonium acetate-acetonitrile. Endrin, α-endosulfan, β-endosulfan , endosulfan sulfate, heptachlor and heptachlor epoxide were determined in the negative ionization mode, while the rest compounds in positive ionization mode. For the identification of the analytes, two multireaction monitoring transitions were selected per compounds except for the heptachlor which selected ion monitoring was used. The linearity of the optimized method ranges after SPE concentration, from 0.009 to 30.60 μgL−1 with correlation coefficients greater than 0.99. The method recovery values varied from 72 to 119 % for the different fortification levels . The developed method was successfully applied to determine OCPs and their metabolites in surface water samples collected near paddy fields in growing season of rice, at year 2005 in Pathumthani province, Thailand. Endosulfan sulfate was detected in five out of seven samples and three of them could be quantitated in the range of 0.31to 0.50 μgL−1.  相似文献   

4.
A method involving the simultaneous extraction and clean-up of 13 organochlorine pesticides (OCPs) from Chinese herbal medicines (CHMs) was developed using supercritical fluid extraction (SFE) followed by gas chromatography-electron capture detection and mass spectrometric confirmation. The pesticides in the study consisted of alpha-, beta-, gamma-, and delta-benzene hexachloride, heptachlor, aldrin, heptachlor epoxide, endosulfan I, 4,4'-DDE (1,1-dichloro-2,2-bis(p-chlorophenyl)ethene), dieldrin, endrin, 4,4'-DDD (1,1-dichloro-2,2-bis(p-chlorophenyl)ethane), endosulfan II, 4,4'-DDT (2,2-bis(p-chlorophenyl)1,1,1-trichloroethane), endrin aldehyde, and endosulfan sulfate. A series of experiments was conducted to optimize the final extraction conditions [pure CO2, 250 atm extraction pressure (1 atm = 101,325 Pa), 50 degrees C extraction temperature, 5 min static extraction time, 20 min dynamic extraction time, 2.0-g Florisil sorbent on top of 0.1-g samples, 12-ml n-hexane eluting at 1 ml/min, and a 10-ml extraction vessel]. Florisil sorbent was placed with the sample in the SFE vessel to provide a facile and effective clean-up approach. Mean recoveries of 78-121% with reproducibilities of 5-31% were obtained for the pesticides except for endosulfan II, endosulfan sulfate and endrin aldehyde. The simple and rapid method may be used to determine OCPs in CHMs routinely, and in fact, was used to analyze CHMs sold in Taiwan.  相似文献   

5.
搅拌棒吸附子萃取与GC-MS法测定水中20种有机氯农药   总被引:2,自引:0,他引:2  
建立了搅拌棒吸附子萃取/气相色谱-质谱法(SBSE/GC-MS)同时检测水中α-六六六、γ-六六六、β-六六六、七氯、δ-六六六、艾氏剂、环氧七氯、γ-氯丹、顺-氯丹、硫丹Ⅰ、p,p-滴滴伊、狄氏剂、异狄氏剂、p,p-滴滴滴、硫丹Ⅱ、p,p-滴滴涕、异狄氏剂醛、硫丹硫酸盐、甲氧滴滴涕、异狄氏剂酮20种有机氯农药含量的方法.样品在室温下经拌棒吸附子搅拌吸附,甲醇解吸附后,以J&W DB-35 MS(30 m×0.25 mm×0.25 μm)石英毛细管色谱柱为分析柱,气相色谱-质谱选择离子流模式检测.考察了萃取时间、氯化钠及甲醇加入量等对萃取的影响.实验结果表明:在2.5 ~20.0 μg/L 范围内,20种有机氯农药呈良好的线性关系,检出限(S/N=3)为0.008 ~0.118 μg/L,水样中分别添加2.5、20 μg/L的20种有机氯农药,回收率为 52% ~117%,相对标准偏差小于13%(n= 6).该方法操作简便、快速、灵敏度高,应用于实际样品检测,结果满意.  相似文献   

6.
ABSTRACT

A multi-residue method using selected ion monitoring mode GC-MSD has been developed for the quantitative analysis of 30 widely used pesticides in fresh peaches produced in Swat Malakand, Pakistan. The planned methodology involved a sample extraction procedure using liquid-liquid partition with acetonitrile followed by a clean-up step based on solid-phase extraction (SPE). Method validation was performed in accordance with European Union guidelines. The European Union criteria (recovery 70–120%, RSD <20%) were met for majority of pesticides. For most of the pesticides, signal-to-noise ratios were good and background-corrected mass spectra often contained sufficient diagnostic to enable identity and confirmation. The limits of quantification (LOQs) were in the range 0.01–1.0 mg/kg. The above method was successfully applied to the analysis of peach samples (n = 30) from the field. Pesticide concentration in real peach samples was compared with the maximum residue levels (MRLs). Pesticide residues were detected in 73% of the peach samples. Most frequent residues were metalaxyl, α-cypermethrin, azoxystrobin, dimethoate, tebuconazol, λ-cyhalothrin and spiromesifin in peach samples.  相似文献   

7.
The principal objective of the present study was to develop a multiresidue analytical method for 62 pesticides in a soil matrix. Soil samples were fortified with known quantities of pesticides at two different concentration levels (0.1 and 0.01 μg/g) and the analytes were extracted via a liquid–solid extraction method. The pesticides were separated on an HP5 capillary column and were detected by gas chromatography coupled to an electron capture detector (GC‐ECD). The method was validated, considering its good linearities (r2 = 0.978–0.999), specificity and recovery characteristics. Recoveries were found between 70.3 and 113.4% for all pesticides except edifenphos (67.5%) and dichlobenil (69.5%) spiked at a 0.1 μg/mL concentration level and 74.5–117% except ethalfluralin (63.3%) and dichlobenil (51.9%) spiked at a concentration of 0.01 μg/mL. The developed method could be utilized as a simple and cost‐effective method for the routine analysis of 62 pesticides in soil samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A small-scale method was developed for the simultaneous determination of gamma-HCH, heptachlor, aldrin, dicofol, mirex, endosulfan I, endosulfan II and endosulfan sulphate in soil. The extraction and clean-up steps were combined into one step by transferring soil samples to chromatographic columns prepacked with neutral alumina. The pesticides elution was processed with n-hexane : dichloromethane (7 : 3) and the concentrated eluate was analysed using gas-liquid chromatography with electron capture detection. Analyses of the "in vitro" fortified samples with the selected pesticides were performed at three different levels. Mean recoveries for aldrin, gamma-HCH and heptachlor, at levels of 2, 10 and 20 ng/g, ranged from 71 to 87%; for dicofol, at levels of 8, 40 and 80 ng/g, ranged from 97 to 103%; for endosulfan I and II, at levels of 5, 25 and 50 ng/g, ranged from 88 to 96%; for mirex, at levels of 6, 30 and 60 ng/g, ranged from 86 to 110%; and for endosulfan sulphate, at levels of 15, 75 and 150 ng/g, ranged from 93 to 104%. The method can be used for rapid determination of these pesticides in soil.  相似文献   

9.
Headspace solid phase microextraction (HS-SPME) was optimized for the analysis of pesticides with gas chromatography electron capture detection (GC-ECD) and high-resolution mass spectrometry. Factors influencing the extraction efficiency such as fiber type, extraction mode and temperature, effect of ionic strength, stirring and extraction time were evaluated. The lowest pesticide concentrations that could be detected in spiked aliquots after HS-SPME–GC-ECD ranged from 0.0005 to 0.0032 μg L− 1. Consequently hexachlorobenzene, trans-chlordane, 4,4′-DDD and 4,4′-DDE were detected in water samples after HS-SPME at concentrations ranging from 2.4 to 61.4 μg L− 1 that are much higher than the 0.1 μg L− 1 maximum limit of individual organochlorine pesticides in drinking water set by the European Community Directive. The same samples were cleaned with ISOLUTE C18 SPE sorbent with an optimal acetone/n-hexane (1:1 v/v) mixture for the elution of analytes. No pesticides were detected after SPE clean-up and pre-concentration. Precision for both methods was satisfactory with relative standard deviations less than 20%. This work demonstrated the superiority of HS-SPME as a sample clean-up and pre-concentration technique for pesticides in water samples as well as the need to identify and control point sources of pesticides.  相似文献   

10.
In this study, a multiresidue analytical method for the detection of 37 pesticides in a soil matrix was developed and validated. The soil sample was fortified with a known quantity of pesticides at two different concentration levels (0.1 and 0.01 µg/g) and the analytes were extracted via a liquid–solid extraction method. The pesticides were separated on an HP5 capillary column and were analyzed with a gas chromatograph coupled to a nitrogen–phosphorous detector (GC‐NPD). Method validation was accomplished with good linearity (r2 = 0.994–0.999) within a considerable range of concentrations. Satisfactory recoveries (70.5–110.4%) were obtained with 32 pesticides at both spiking concentration levels, whereas five pesticides—dimepiperate, buprofezin, prometryn, pirimicarb, and fludioxonil—were recovered at relatively low levels (43.6–61.8%). The applicability of the method was demonstrated by analyzing field samples collected from 24 different sites around Yeongsan and Sumjin rivers in the Republic of Korea. No residues of the selected pesticides were detected in any of the samples. The developed method could be employed as a simple and cost‐effective method for the routine detection and analysis of 37 pesticides in soil samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Analytical methods, based on GC–MS and LC–MS, for the determination of traces of 2,4,4′-trichloro-2′-hydroxydiphenyl ether (triclosan) and biphenylol in urban wastewater and marine sediments were developed. These methods involve the use of diverse analytical techniques, such as solid phase extraction (SPE) and pressurized liquid extraction for sample preparation, and GC–negative chemical ionization MS and LC–electrospray ionization (ESI) MS–MS for identification and quantification. The recoveries of triclosan and biphenylol were 84 and 80% in wastewater and 100 and 73% in sediments, respectively. Detection limits obtained were in the range of ppb and ppt. To prove their applicability to real samples and as part of a more extensive monitoring program, the developed methods were applied to the analysis of wastewater samples, coming from an urban wastewater treatment plant (UWWTP), and of marine sediment samples collected at the outflow of two UWWTPs to the sea. Results obtained reveal the presence of triclosan in all the samples at concentrations that ranged from 0.8 to 37.8 μg/l in wastewater and from 0.27 to 130.7 μg/kg in sediments. These preliminary data reinforce the interest for further research on this topic.  相似文献   

12.
Due to the wide range of pesticides that can be used in agriculture, the development of fast multiresidue methods that simultaneously determine polar and non-polar pesticides is greatly demanded. This study shows the development and validation of a multiresidue method for the analysis of 98 non-polar pesticides and 28 polar pesticides in soil. A simultaneous extraction step by pressurized liquid extraction was utilized. The optimum results were obtained using ethyl acetate-methanol (3:1, v/v) with 2 min of preheat time and 85 degrees C as the extraction temperature. The final determination of non-polar pesticides was performed by GC, whereas polar pesticides were determined by ultra-performance liquid chromatography (UPLC). Both GC and UPLC were coupled to triple-quadrupole analyzers operating in tandem MS. The optimized extraction procedure was validated. The average extraction recoveries were in the range 72-108% (10 microg/kg) and 71-106% (50 microg/kg), with RSD values < or = 26%. The matrix effect was also evaluated, and matrix-matched standard calibration was finally applied for quantification. The suitability of the method was also checked by the analysis of a certified reference material. Furthermore, 26 real soil samples were analyzed by the proposed methods in order to assess their applicability. Several pesticides (e.g., bifenthrin, triadimefon, or endosulfan) were found in the samples.  相似文献   

13.
A novel analytical approach has been developed and evaluated for the quantitative analysis of a selected group of widely used pesticides (dimethoate, simazine, atrazine, diuron, terbuthylazine, methyl-parathion, methyl-pirimiphos, endosulfan I, endosulfan II, endosulfan sulphate, cypermethrin and deltamethrin), which can be found at trace levels in olive oil and olives. The proposed methodology is based on matrix solid-phase dispersion (MSPD), (with a preliminary liquid-liquid extraction in olive oil samples) using aminopropyl as sorbent material with a clean-up performed in the elution step with Florisil, followed by mass spectrometric identification and quantitation of the selected pesticides using both gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) mode and liquid chromatography tandem mass spectrometry (LC-MS-MS) in positive ionization mode. The recoveries obtained (with mean values between 85 and 115% (obtained at different fortification levels) with RSD values below 10% in most cases, confirm the usefulness of the proposed methodology for the analyses of these kind of complex samples with a high fat content. Moreover, the obtained detection limits, which were below 5 microg kg(-1) by LC-MS analyses and ranged from 10 to 60 microg kg(-1) by GC-MS meet the requirements established by the olive oil pesticide regulatory programs. The method was satisfactorily applied to different olives and olive oil samples.  相似文献   

14.
Gas chromatography-mass spectrometry (GC/MS) was employed for the determination of 30 widely used pesticides including various transformation products and alkylphenols in water and agricultural soils with the aim of assessing the impact of these compounds in agricultural soils and the underlying aquifer. The extraction, clean-up, and analytical procedures were optimized for both water and soil samples to provide a highly robust method capable of determining target analytes at the ppb–ppt level with high precision. For water samples, different solid-phase extraction cartridges and conditions were optimized; similarly, pressurized liquid extraction conditions were tested to provide interference-free extracts and high sensitivity. Instrumental LODs of 3–4 pg were obtained. The multi-residue extraction procedures were applied to the analysis of groundwaters and agricultural soils from the Ebro river basin (NE Spain). Most ubiquitous herbicides detected were triazines but some acetanilides and organophosphorus pesticides were also found; the pesticide additive tributylphosphate was found in all water samples. Levels varied between 0.57 and 5.37 μg/L in groundwater, whereas nonylphenol was the sole compound detected in soil. Alkylphenols are used as adjuvants in pesticide formulations and are present in sludges employed as soil fertilizers. Occurrence was found to be similar to other environmental studies.  相似文献   

15.
A wide range of pesticides used to control pests in vegetables have been determined in agricultural plant waste from beans, watermelons, and melons grown in greenhouses located in a predominantly agricultural area in Southeast Spain (Almería). Analysis of the pesticides was carried out by low-pressure gas chromatography (LP-GC) with mass spectrometry in tandem (MS–MS) mode, after extraction of the lyophilized samples with dichloromethane. The influence of the sample matrix on the analysis was avoided by use of matrix-matched standards. Linearity, detection limit (LOD), quantitation limit (LOQ), recovery, and precision for each pesticide were calculated. The most frequently encountered pesticides were endosulfan (>73% of the analyzed samples) and buprofezin (>55% of the samples), followed by cypermethrin, pirimifos-methyl, bifentrin, and chlorpyrifos (>30% of the samples). The pesticide found at the highest concentration level was endosulfan (223.33 mg kg–1) in a watermelon sample.  相似文献   

16.
The synthesis of tetrakis[4,4′,6,6′-tetrasubstituted-1,1′-bi-2-naphtholphosphate]dirhodium(II) complexes, and their use as catalysts in the enantioselective tandem carbonyl ylide formation–intramolecular 1,3-dipolar cycloaddition of an unsaturated 2-diazo-3,6-diketoester, generating cycloadduct in up to 86% ee, is described.  相似文献   

17.
Pesticide residues on fruits and vegetables from Ontario, Canada, 1991-1995   总被引:3,自引:0,他引:3  
For the 5-year period 1991 to 1995, 1536 vegetable and 802 fruit samples were analyzed. The purpose of this study was to determine if pesticides were present on Ontario-produced fruits and vegetables, and if so, to determine if residues violated maximum residue limits (MRLs). Overall, 31.5% of the samples had no detectable pesticide residues, whereas 68.5% contained one or more residues. Most of the residues were present at very low concentrations; 48% of the detections were < 0.1 parts per million (ppm), and 86% were < 1 ppm. However, violations of MRL were observed in only 3.2% of the vegetables samples and 3.1% of the fruit samples. In addition, 4.8% of the samples contained a "technical" violation, that is, there was no specified MRL for the pesticide-commodity combination and the residues exceeded 0.1 ppm. Of the detectable residues, 63% were < 10% of the MRL, whereas 89% were < 50% of the MRL. More fruit samples (91.4%) had a detectable residue, compared with vegetable samples (56.6%). Fruit is often treated close to harvest or post harvest to ensure that wholesome produce reaches the consumer. Forty-six percent of the samples contained 2 or more residues, and 2% of all samples had more than 5 different pesticides detected; fruit samples tended to have more multiple residues. The most frequently found pesticides were captan, the dithiocarbamate fungicides, endosulfan, azinphos-methyl, phosmet, parathion, and iprodione. These pesticides were also used in the greatest quantity for crop production. Overall, the data agree fairly closely with those reported for the U.S. Department of Agriculture Pesticide Data Program because the 2 programs have similar analytical goals and objectives.  相似文献   

18.
Soil samples are collected from the former Open Burn/Open Detonation Unit, Makua Military Reservation, on the island of Oahu, Hawaii. The soil is the Helemano series. The soil samples are fortified with eight explosives for development of the analytical method. These analytes are 2-amino-4,6-dinitrotoluene; 1,3-dinitrobenzene; 2,4-dinitrotoluene (DNT); hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX); nitrobenzene (NB); octogen; 1,3,5-trinitrobenzene; and 2,4,6-trinitrotoluene. The analytes are recovered with pressurized fluid extraction and measured with liquid chromatography (LC), LC-mass spectrometry (MS), and gas chromatography-MS. Average recoveries of the seven analytes, except for NB, range from 67% to 110% from freshly fortified samples. The procedure fails to extract NB in soil. The average recoveries decrease from 67-110% to 41-81% as the soil is aged for 1 day to 6 months after fortification of the soil with the seven explosives. The field samples are analyzed for the presence of explosives, of which DNT and RDX are indeed detected. The results obtained with this procedure agree well with those obtained by an independent laboratory following the standard U.S. Environmental Protection Agency (EPA) method SW-846 8330. Compared with the EPA method, this new method provides MS confirmation of the analytes, and the extraction requires approximately 15 min, rather than 18 h by the EPA method.  相似文献   

19.
In the present study an analytical method was optimized for the determination of alpha-endosulfan, beta-endosulfan, endosulfan sulfate, endosulfan ether and endosulfan lactone in small volumes of environmental aqueous samples using solid-phase microextraction (SPME) and gas chromatography-electron capture detection (GC-ECD). A 100 micro m polydimethylsiloxane (PDMS) phase was used for the extraction. The limit of detection (LOD) for the analytes varied between 0.01 and 0.03 micro g L(-1) with a relative standard deviation of 3 to 11%. The influence of the ionic strength on the extraction efficiency was investigated for the individual compounds. alpha-Endosulfan, beta-endosulfan, endosulfan sulfate and endosulfan ether were extracted successfully without salt addition. The extraction efficiency of endosulfan lactone was improved with 30% NaCl content. A general decrease in extraction efficiency for alpha-endosulfan, beta-endosulfan, endosulfan sulfate and endosulfan ether with high NaCl content (20-30%) in the solution was observed due to glass surface adsorption. No effect of dissolved organic material (DOM) on the extraction efficiency was observed. The extraction coefficients changed between Log K=2.17 and 3.33. A sample from the Antarctic region was analyzed using the optimized GC-ECD/SPME method. To confirm the results obtained for the real sample a GC with a mass spectrometer (MS) was used. Endosulfan sulfate, the most toxic metabolite of endosulfan, was found in the sample at a concentration of 0.3 micro g L(-1).  相似文献   

20.
An analytical methodology for nifedipine quantitation in plasma by on-line solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC) is described. The SPE cartridges contain C2 and the analytes nifedipine and nitrendipine (internal standard) are separated on a C18 column with a mobile phase consisting of acetonitrile–13 mM phosphate buffer pH 7 (65:35, v/v) followed by UV detection at 338 nm. Validation of the method demonstrated good recoveries (>90%), sensitivity (limit of quantification, 2 ng/ml), based on a 500 μl sample volume, accuracy and precision (<5.5% in concentrations greater than the limit of quantitation). This methodology has been used for bioequivalence studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号