首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The reciprocal system 3Tl2S + Bi2Se3 ? 3Tl2Se + Bi2S3 has been investigated by DTA, X-ray powder diffraction analysis, and emf measurements. Some polythermal sections and the isothermal section at 500 K of the phase diagram and the projection of the liquidus surface of this system have been constructed, and the types and coordinates of the invariant and univariant equilibria have been determined. The existence of wide regions of quaternary solid solutions based on the binary compounds Tl2S, Tl2Se, Bi2S3, and Bi2Se3, and solid solutions between the temary compounds TlBiS2 and TlBiSe2 have been established.  相似文献   

2.
Non-invasive theranostics that integrate the advantages of multimodality imaging and therapeutics have great potential in the field of biomedicine. Herein, a new nanohybrid based on Bi2Se3-conjugated upconversion nanoparticles (UCNPs) has been successfully developed through a simple in situ growth strategy. Under 808 nm near-infrared laser irradiation, the UCNPs can emit bright visible light, whereas the Bi2Se3 nanomaterial exhibits efficient photothermal conversion capacity. Moreover, the as-synthesized UCNP–Bi2Se3 nanohybrid exhibits efficient cell upconversion luminescence (UCL), reasonable CT imaging, and admirable cancer cell ablation capacity, further emphasizing the efficiency of this strategy for simultaneous UCL imaging and photothermal therapy. The designed theranostic strategy guided by dual-modal imaging endowed with real-time dynamic monitoring, remote controllability, and non-invasiveness makes the UCNP–Bi2Se3 nanohybrid an ideal candidate for non-invasive multimodal imaging-guided photothermal therapy for the precise diagnosis and treatment of cancer.  相似文献   

3.
Thermochemical Investigation on the System Bi/Se/O. I The Phase Triangle Bi2Se3/Bi2O2Se/Se By total pressure measurements of compositions in the subsystem Bi2Se3/Bi2O2Se/Se was shown, that in thermodynamic equilibrium the three phases Bi2Se3/Bi2O2Se/Se coexist. The barogram of the triangle reduces to the barogram of the line Bi2Se3? Se, the compound Bi2O2Se is not from influence of the total pressure in the investigated temperature range.  相似文献   

4.
The subject of the present study is the system SeO2-Bi2O3 that comprises two oxides with low melting points. All batches are thermal treatment in quartz ampoules, which are evacuated and sealed at a pressure P=0.1 Pa. On the basis of DTA (differential thermal analysis) and X-ray data, the most probable liquidus line of the system has been plotted. The eutectic composition lies about 90 mol% SeO2,with on eutectic temperature at 230°C. Above 20 mol% Bi2O3 the liquidus temperature extremely increases. The formation of three compounds is proved:Bi2Se3O9 and Bi2Se4O11 are melting incongruently at 540 and 350°C respectively and Bi2SeO5 congruently at 915°C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
From phasebarograms it is possible to construct phase diagrams. We show on example of the system Bi/Se/O how follow ternary sections from the total pressure measurements in equilibrium and how we can attribute the barogram of the ternary region Bi2Se3/Bi2O2Se/Se to the binary system Bi2Se3/Se. The knowledge of the ternary system Bi/Se/I and its coexistent pressure courses allow to followT-p-x conditions for the chemical transport of phases from this system.
  相似文献   

6.
The Pb-Bi-Se system in the PbSe-Bi2Se3-Se-Se composition region was studied by measurement of concentration circuits of the type (−) PbSe(solid) liquid electrolyte, Pb2+(Pb-Bi-Se)(solid) (+) in the temperature range 300–430 K and by X-ray powder diffraction. A solid-phase equilibrium diagram was constructed, and the formation was confirmed for the ternary compounds Pb5Bi6Se14, Pb5Bi12Se23, and Pb5Bi18Se32, which belong to the homologous series [(PbSe)5] m · [(Bi2Se3)3] n . From the emf versus temperature equations, the partial thermodynamic functions [`(DG)]\overline {\Delta G}, [`(DH)]\overline {\Delta H}, [`(DS)]\overline {\Delta S} of PbSe in alloys were calculated. Based on the solid-phase equilibrium diagram from these partial molar quantities using the corresponding data for PbSe and Bi2Se3, the standard thermodynamic functions of formation and standard entropies of the above ternary compounds were calculated.  相似文献   

7.
The valence band (VB) density of states and the binding energies of the weakly bound core levels have been measured by XUV photoelectron spectroscopy using synchrotron radiation for four V–VI layered compounds. Chemical shifts of the core levels are determined which support the partial ionicity of the bonds involved. The chemical shifts of the emission from two unequivalent crystal sites were shown to differ by less than 30 meV for the compounds Bi2Te3, Bi2Se3 and Sb2Te3.VB and core-level photoemission spectra for the V–VI compounds Bi2Te3, Bi2Se3, Sb2Te3 and Se2Te2Se have been presented. Chemical shifts of the Te 4d, Bi 5d, Sb 4d and Se 3d levels were determined, indicating partial ionicity of the mainly covalent bonds involved. Chemical-shift differences originating from atoms at two different crystal sites are <30 meV. In a simple model this implies that similar charge transfers do occur even though completely different bond orbitals were proposed for the and the AB(2) bonds. Finally, the fact that no surface core-level shifts were observed tends to confirm the very weak influence of the van der Waals-like bonds on the B(2) atoms.  相似文献   

8.
Bi2Se3 nanosheets and nanotubes were prepared by a hydrothermal co-reduction method at 150, 180, 200, and 210 °C. Bi2Se3 nanosheets, nanobelts and nanotubes were obtained. The Bi2Se3 nanoflakes are 50-500 nm in width and 2-5 nm in thickness. The Bi2Se3 nanotubes are 5-10 nm in diameter, 80-120 nm in length, and 1.3 nm in wall thickness. X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, and electron diffraction were employed to characterize the products. Experimental results showed that the nanosheets and the nanotubes are hexagonal in structure with a=4.1354 Å and c=27.4615 Å. A possible formation and crystal growth mechanism of Bi2Se3 nanostructures is proposed.  相似文献   

9.
《Solid State Sciences》2012,14(2):241-249
In this paper, we present the Compton profiles of Bi2S3 and Bi2Se3 using our 20 Ci 137Cs Compton spectrometer. To compare our experimental data, we have computed the Compton profiles, energy bands and density of states using linear combination of atomic orbitals with density functional theory (DFT) and Hartree-Fock (HF) scheme. It is seen that hybrid functional involving HF and DFT approximations gives a relatively better agreement with experimental momentum densities than other approximations of DFT. We have also reported the band structure, density of states, valence charge densities, dielectric functions and electron energy loss spectra using full potential linearized augmented plane wave scheme. On the basis of charge densities, Mulliken’s population data and equal-valence-electron-density profiles, Bi2S3 is found to be more ionic than Bi2Se3. The calculated dielectric functions for the parallel and perpendicular polarizations show a small anisotropic effect. The electron energy loss spectrum for Bi2Se3 is found to be in good agreement with the available experimental data.  相似文献   

10.
蒋亚 《无机化学学报》2010,26(9):1695-1698
Well-crystallized Bi2Te3 hollow spheres and nanosaws were prepared by microwave heating. Both the ionic liquid and the microwave heating play important role in the formation of the above nanostructures. Hollow spheres can not be obtained only by electronic stove heating, while the addition of ionic liquid leads to fast preparation of nanosaws structure under microwave heating conditions. The similar experimental results have been observed in the preparation of Bi2S3, Sb2S3 and Bi2Se3 nanostructures.  相似文献   

11.
Investigations on the Pseudobinary System Bi2Se3/BiI3 The phase diagram of the pseudobinary system Bi2Se3/BiI3 was investigated by DTA, total pressure measurements and x-ray phase analysis. Only BiSeI exist as a ternary phase in this system. The compound melts incongruently at 545 °C. Heat of formation and standard entropy were calculated from vapor pressure data.ΔHB° (BiSeI, f, 298) = (–23.4 ± 1.9) kcal/mol S°(BiSeI, f, 298) = (38.7 ± 3.5) cal/K · mol  相似文献   

12.
李辉  彭海琳  刘忠范 《物理化学学报》2012,28(10):2423-2435
拓扑绝缘体是一种全新的量子功能材料, 具有绝缘性体能带结构和受时间反演对称性保护的自旋分辨的金属表面态, 属于Dirac 粒子系统, 将在新原理纳电子器件、自旋器件、量子计算、表面催化和清洁能源等方面有广泛的应用前景. 理论和实验相继证实Sb2Te3, Bi2Se3和Bi2Te3单晶具有较大的体能隙和单一Dirac 锥表面态, 已经迅速成为了拓扑绝缘体研究中的热点材料. 然而, 利用传统的高温烧结法所制成的拓扑绝缘体单晶块体样品常存在大量本征缺陷并被严重掺杂, 拓扑表面态的新奇性质很容易被体载流子掩盖. 拓扑绝缘体二维纳米结构具有超高比表面积和能带结构的可调控性, 能显著降低体态载流子的比例和凸显拓扑表面态, 并易于制备高结晶质量的单晶样品, 各种低维异质结构以及平面器件. 近年来, 我们一直致力于发展拓扑绝缘体二维纳米结构的控制生长方法和物性研究. 我们发展了拓扑绝缘体二维纳米结构的范德华外延方法, 实现了高质量大比表面积的拓扑绝缘体二维纳米结构的可控制备, 并实现了定点与定向的表面生长. 开展拓扑绝缘体二维纳米结构的谱学研究, 利用角分辨光电子能谱直接观察到拓扑绝缘体狄拉克锥形的表面电子能带结构, 发现了拉曼强度与位移随层数的依赖关系. 设计并构建拓扑绝缘体纳米结构器件, 系统研究其新奇物性, 观测到拓扑绝缘体Bi2Se3表面态的Aharonov-Bohm (AB)量子干涉效应等新奇量子现象, 通过栅电压实现了拓扑绝缘体纳米薄片化学势的调控, 并将拓扑绝缘体纳米结构应用于柔性透明导电薄膜. 本文首先简单介绍拓扑绝缘体的发展现状, 然后系统介绍我们开展的拓扑绝缘体二维纳米结构的范德华外延生长、谱学、电学输运特性以及透明柔性导电薄膜应用的研究, 最后对该领域所面临的机遇和挑战进行简要的展望.  相似文献   

13.
Selenium Polycations Stabilized by Polymeric Chlorobismuthate Anions: Syntheses and Crystal Structures of Se4[Bi4Cl14] and Se10[Bi5Cl17] Reactions of selenium with selenium(IV) chloride and bismuth(III) chloride in sealed evacuated glass ampoules at temperatures between 110 and 155 °C yield a series of compounds which are composed of discrete selenium polycations and polymeric chlorobismutate anions. Besides the already known Se8[Bi4Cl14] two new compounds have been identified by crystal structure analyses as Se4[Bi4Cl14] (tetragonal, P4/n, a = 1089.1(2) pm, c = 993.7(2) pm, Z = 2) and Se10[Bi5Cl17] (monoclinic, P21/c, a = 1079.24(8) pm, b = 2062.9(2) pm, c = 1676.1(2) pm, β = 90.87(1)°, Z = 4). Se4[Bi4Cl14] was obtained as red transparent platelike crystals and is the first example of a compound with (chalcogen4)2+ ions of exact square‐planar symmetry and molecular point group D4h in the solid state. The cations are surrounded by layers of two‐dimensional polymeric anions [Bi4Cl14]2–. Se10[Bi5Cl17] forms dark grey crystals with a reddish luster. The structure contains the known bicyclic polycation Se102+ which is disordered over two positions and the first three‐dimensional polymeric chlorobismutate anion [Bi5Cl17]2–. The different BiClx polyhedra are linked by sharing common vertices, edges, and faces.  相似文献   

14.
Directed conversion reactions from binary to multinary compounds are discovered from the reaction of Bi2S3 and Bi2Se3 with NiCl2 ? 6 H2O in polyol media under basic conditions. Control of the synthesis conditions allows the preparation of NiBiSe and superconducting Ni3Bi2S2 and Ni3Bi2Se2. The formation of Ni3Bi2S2 from Bi2S3 is found from an unexpected three‐step reaction path with Bi and NiBi as intermediates. In the more complex Ni/Bi/Se system, the mechanism found can be used to selectively direct the reaction between the competing ternaries and to suppress side‐product formation. Contrary to solid‐state reactions (500–900 °C) control of product formation is reached at reaction temperatures and times between 166–300 °C and 0.5–10 h, respectively. The formation of different phases is discussed from results of DFT calculations.  相似文献   

15.
《中国化学快报》2023,34(8):107981
Recently, two-dimension (2D) materials have fueled considerable interest in the field of gas sensing to cope urgent demands at specific scenarios. Unfortunately, the susceptibility to ambient humidity, and/or fragile operation stability always frustrate their further practicability. To overcome these drawbacks, we proposed one novel flexible gas sensor based on bismuth selenide (Bi2Se3) nanoplates for sensitive NO2 detection at room temperature. The as-prepared Bi2Se3 sensor exhibited favorable sensing performance, including remarkable NO2 selectivity, high response of 120% and fast response time of 81 s toward 5 ppm NO2, an ultralow detection limit of 100 ppb, and nice stability. Besides, the excellent humidity tolerance and mechanical flexibility endowed Bi2Se3 sensors with admirable reliability under harsh working conditions. The first-principles calculation further revealed the insights of extraordinary NO2 selectivity and the underlying gas-sensing mechanism.  相似文献   

16.
In the ternary system Se/Bi/Cl a new polycation containing phase besides the already known Se4[Bi4Cl14], Se8[Bi4Cl14], and Se10[Bi5Cl17] was discovered. Red, transparent, plate shaped crystals of Se10[Bi4Cl14] were formed by reaction of Se/SeCl4/BiCl3 in 15:1:8 molar ratio in evacuated glass ampoules applying a temperature gradient from 90 to 80 °C. The crystal structure consists of bicyclic Se102+ cations and of layered chloridobismutate anions with the cations located between the anionic planes. The atoms of the cation form a six membered ring with a Se4 chain bridging over the 1,4 positions of the Se6 ring. The anions are made up of BiCl7 polyhedra connected by common edges to layers all contain an anion of identical formula and two‐dimensional connectivity, but these polymeric chloridobismutates are not isostructural. The structural differences are discussed on basis of the different topologies of the nets made up by the bismuth atoms.  相似文献   

17.
Synthesis and Crystal Structures of the Quaternary Chalcogenide Chlorides AgBi2S3Cl and AgBi2Se3Cl Grey crystals of AgBi2S3Cl and AgBi2Se3Cl were synthesized from AgCl and Bi2S3 or Bi2Se3by cooling stoichiometric melts from 790 K to room temperature. X‐ray diffraction on powders and single‐crystals revealed that the compounds crystallize isostructural with space group type P 21/m. In the crystal structure of AgBi2S3Cl the bismuth(III) cations have a capped trigonal prismatic coordination of sulfide and chloride ions. The prisms constitute a three‐dimensional framework by sharing common edges and faces. Silver(I) cations, which have a distorted octahedral coordination of sulfide ions, fill linear channels. Parallels to the crystal structures of Cu3Bi2S4Cl and Pr2Br5 can be seen.  相似文献   

18.
Ag-doped n-type (Bi2Te3)0.9-(Bi2−xAgxSe3)0.1 (x=0-0.4) alloys were prepared by spark plasma sintering and their physical properties evaluated. When at low Ag content (x=0.05), the temperature dependence of the lattice thermal conductivity follows the trend of (Bi2Te3)0.9-(Bi2Se3)0.1; while at higher Ag content, a relatively rapid reduction above 400 K can be observed due possibly to the enhancement of scattering of phonons by the increased defects. The Seebeck coefficient increases with Ag content, with some loss of electrical conductivity, but the maximum dimensionless figure of merit ZT can be obtained to be 0.86 for the alloy with x=0.4 at 505 K, about 0.2 higher than that of the alloy (Bi2Te3)0.9-(Bi2Se3)0.1 without Ag-doping.  相似文献   

19.
Quaternary chalcogenides InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9 were synthesized on direct combination of their elements in stoichiometric ratios at T>800 °C under vacuum. Their structures were determined with X-ray diffraction of single crystals. InSn2Bi3Se8 crystallizes in monoclinic space group C2/m (No. 12) with a=13.557(3) Å, b=4.1299(8) Å, c=15.252(3) Å, β=115.73(3)°, V=769.3(3) Å3, Z=2, and R1/wR2/GOF=0.0206/0.0497/1.092; In0.2Sn6Bi1.8Se9 crystallizes in orthorhombic space group Cmc21 (No. 36) with a=4.1810(8) Å, b=13.799(3) Å, c=31.953(6) Å, V=1843.4(6) Å3, Z=4, and R1/wR2/GOF=0.0966/0.2327/1.12. InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9 are isostructural with CuBi5S8 and Bi2Pb6S9 phases, respectively. The structures of InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9 feature a three-dimensional framework containing slabs of NaCl-(311) type with varied thicknesses. Calculations of the electronic structure and measurements of electrical conductivity indicate that these materials are semiconductors with narrow band gaps. Both compounds show n-type semiconducting properties with Seebeck coefficients −270 and −230 μV/K at 300 K for InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9, respectively.  相似文献   

20.
Bi2Se3 attracts intensive attention as a typical thermoelectric material and a promising topological insulator material. However, previously reported Bi2Se3 nanostructures are limited to nanoribbons and smooth nanoplates. Herein, we report the synthesis of spiral Bi2Se3 nanoplates and their screw‐dislocation‐driven (SDD) bidirectional growth process. Typical products showed a bipyramid‐like shape with two sets of centrosymmetric helical fringes on the top and bottom faces. Other evidence for the unique structure and growth mode include herringbone contours, spiral arms, and hollow cores. Through the manipulation of kinetic factors, including the precursor concentration, the pH value, and the amount of reductant, we were able to tune the supersaturation in the regime of SDD to layer‐by‐layer growth. Nanoplates with preliminary dislocations were discovered in samples with an appropriate supersaturation value and employed for investigation of the SDD growth process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号