首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 492 毫秒
1.
Preparation and Electrochemistry of [Nb(OTeF5)6]? and [Ta(OTeF5)6]? Complexes Nb(OTeF5)5 and Ta(OTeF5)5 react with Cs[OTeF5], [Et4N][OTeF5], and [(n-Bu)4N][OTeF5] to the corresponding Cs[M(OTeF5)6], [Et4N][M(OTeF5)6], and [(n-Bu)4N][M(OTeF5)6] complexes, (M = Nb, Ta). The electrochemical reduction of the niobium complex occurs in CH2Cl2 at ?0,69 V and in acetonitrile at ?0,60 V (vs. SCE). The tantalum complex is reduced in CH2Cl2 at ?1,52 V and in acetonitrile at ?1,42 V (vs. SCE).  相似文献   

2.
The tantalum derivative TaCl5(SOCl2), thermally unstable above 290 K, was prepared from Ta2Cl10 and SOCl2 and studied by X‐ray crystallography at 180 K. Tantalum atom is octahedrally coordinated by five chlorides at Ta–Cl distances comprised between 2.32 and 2.36 Å and by the oxygen atom of SOCl2 at the Ta–O distance of 2.34 Å. No evidence for the existence of an analogous compound of niobium(V) has been obtained. The halides of Group 5, M2Cl10, M = Nb, Ta, react with SeOCl2 to give the solid adducts MCl5(SeOCl2) stable at room temperature. The reaction of NbCl5(SeOCl2) with SOCl2 affords [SeCl3][NbCl6] which contains trigonal‐pyramidal (SeCl3)+ cations with Se–Cl distances of 2.13–2.16 Å and octahedral [NbCl6] anions (Nb–Cl: 2.27–2.45 Å). A distorted octahedral coordination around the selenium atom is achieved by additional interactions [Se…Cl, 2.81–2.98 Å] between selenium and the [NbCl6] anion.  相似文献   

3.
Weakly coordinating anions (WCAs) are important for academic reasons as well as for technical applications. Tetrakis(pentafluoroethyl)gallate, [Ga(C2F5)4]?, a new WCA, is accessible by treatment of [GaCl3(dmap)] (dmap=4‐dimethylaminopyridine) with LiC2F5. The anion [Ga(C2F5)4]? proved to be reluctant towards deterioration by aqueous hydrochloric acid or lithium hydroxide. Various salts of [Ga(C2F5)4]? were synthesized with cations such as [PPh4]+, [CPh3]+, [(O2H5)2(OH2)2]2+, and [Li(dec)2]+ (dec=diethyl carbonate). Thermolysis of [(O2H5)2(OH2)2][Ga(C2F5)4]2 gives rise to a dihydrate of tris(pentafluoroethyl)gallane, [Ga(C2F5)3(OH2)2]. All products were characterized by NMR and IR spectroscopy, mass spectrometry, X‐ray diffraction, and elemental analysis. Furthermore, an outlook for the application of [Li(dec)2][Ga(C2F5)4] as a conducting salt in lithium‐ion batteries is presented.  相似文献   

4.
New Amido and Imido Bridged Complexes of Copper – Syntheses and Structures of [{Li(OEt2)}2][Cu(NPh2)3], [ClCuN(SnMe3)3], [{CuN(SnMe3)2}4], [Cu16(NH2tBu)12Cl16], [{CuNHtBu}8], [Li(dme)3][Cu6(NHMes)3(NMes)2], [PPh3(C6H4)CuNHMes], [{[Li(dme)][Cu(NHMes)(NHPh)]}2], and [{Li(dme)3}3][Li(dme)2][Cu12(NPh)8] The reactions of stannylated and lithiated amines with coppersalts (halogenides, thiocyanates) lead to amido and imido bridged complexes which contain one to twelve metal atoms. [{Li(OEt2)}2][Cu(NPh2)3] ( 1 ) results from the reaction of CuCl with LiNPh2 in the presence of trimethylphosphine. With N(SnMe3)3, CuCl reacts to the donor‐acceptor complex [ClCuN(SnMe3)3] ( 2 ) that is transformed into the tetrameric complex [{CuN(SnMe3)2}4] ( 3 ) by thermolysis. 3 can also be obtained by the reaction of LiN(SnMe3)2 with Cu(SCN)2. While terminally bound in 1 , the amido ligand is μ2‐bridging between copper atoms in compound 3 . The influence of the alkyl amide's leaving group can be seen from a comparison of the reactivity of Me3SnNHtBu and LiNHtBu, respectively. With Me3SnNHtBu, CuCl2 forms the polymeric compound [Cu16(NH2tBu)12Cl16] ( 4 ) whereas in the case of LiNHtBu with both CuCl and CuSCN, the complex [{CuNHtBu}8] ( 5 ) is obtained. The latter contains two planar Cu4N4‐rings similar to those in 3 . If a mesityl group is introduced at the lithium amide, different products are accessible. Both, CuBr and CuSCN, lead to the formation of [Li(dme)3][Cu6(NHMes)3(NMes)2] ( 6 ) whose anion consists of a prismatic copper core with μ2‐bridging amido and μ3‐bridging imido ligands. In the presence of PPh4Cl, a mixture of Cu(SCN)2 and LiNHMes enables an ortho‐metallation reaction that produces [PPh3(C6H4)CuNHMes] ( 7 ). From the reaction of CuSCN with LiNHMes and LiNHPh either the dimeric complex [{[Li(dme)][Cu(NHMes)(NHPh)]}2] ( 8 ) or the cluster [{Li(dme)3}3][Li(dme)2][Cu12(NPh)8] ( 9 ) results. The anion in 9 exhibits a cubo‐octahedron of copper atoms μ3‐bridged by (NPh)2–‐ligands. The solid state structures of compounds 1 – 9 have been determined by single crystal X‐ray diffraction.  相似文献   

5.
Complexes of the Alkali Metal Tetraphenylborates with Macrocyclic Crown Ethers Alkali metal tetraphenylborates, MB(C6H5)4 (M = Li to Cs), react in tetrahydrofuran with macrocyclic crown ethers to give complexes of the general formula MB(C6H5)4(crown)m(THF)n. Suitable single crystals for X‐ray structure analysis were grown from a solvent mixture of tetrahydrofuran and n‐hexane. The salt like complexes [Li(12‐crown‐4)(thf)][B(C6H5)4] ( 1 ), [Na(15‐crown‐5)(thf)][B(C6H5)4] ( 2 ), and [Cs(18‐crown‐6)2][B(C6H5)4] · THF ( 6 ), the mononuclear molecular complexes [KB(C6H5)4(18‐crown‐6)(thf)] ( 3 ), [RbB(C6H5)4(18‐crown‐6)] ( 4 ), and [CsB(C6H5)4(18‐crown‐6)] · THF ( 5 ), and the compound [CsB(C6H5)4(18‐crown‐6)]2[Cs(18‐crown‐6)2][B(C6H5)4] ( 7 ), which contains a binuclear molecule ([CsB(C6H5)4(18‐crown‐6)]2) beside a [Cs(18‐crown‐6)2]+ cation and a [B(C6H5)4]? anion, are described. All compounds are charactarized by infrared spectra, elemental analysis, NMR‐spectroscopy, and X‐ray single crystal structure analysis.  相似文献   

6.
The reaction of the aryl‐oxide ligand H2L [H2L = N,N‐bis(3, 5‐dimethyl‐2‐hydroxybenzyl)‐N‐(2‐pyridylmethyl)amine] with CuSO4 · 5H2O, CuCl2 · 2H2O, CuBr2, CdCl2 · 2.5H2O, and Cd(OAc)2 · 2H2O, respectively, under hydrothermal conditions gave the complexes [Cu(H2L1)2] · SO4 · 3CH3OH ( 1 ), [Cu2(H2L2)2Cl4] ( 2 ), [Cu2(H2L2)2Br4] ( 3 ), [Cd2(HL)2Cl2] ( 4 ), and [Cd2(L)2(CH3COOH)2] · H2L ( 5 ), where H2L1 [H2L1 = 2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenol] and H2L2 [H2L2 = 2‐(2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenoxy)‐4, 6‐dimethylphenol] were derived from the solvothermal in situ metal/ligand reactions. These complexes were characterized by IR spectroscopy, elementary analysis, and X‐ray diffraction. A low‐temperature magnetic susceptibility measurement for the solid sample of 2 revealed antiferromagnetic interactions between two central copper(II) atoms. The emission property studies for complexes 4 and 5 indicated strong luminescence emission.  相似文献   

7.
Crown Ether Complexes of Lead(II). The Crystal Structures of [PbCl(18-Krone-6)][SbCl6], [Pb(18-Krone-6)(CH3CN)3][SbCl6]2 und [Pb(15-Krone-5)2][SbCl6]2 . [PbCl(18-crown-6)][SbCl6] has been prepared in low yield besides [Pb(CH3)2(18-crown-6)][SbCl6]2 by the reaction of Pb(CH3)2Cl2 with antimony pentachloride in acetonitrile solution in the presence of 18-crown-6, forming pale-yellow crystals. The other two title compounds are formed as colourless crystals by the reaction of PbCl2 with antimony pentachloride in acetonitrile solutions in the presence of 18-crown-6 and 15-crown-5, respectively. The complexes were characterized by IR spectroscopy and by crystal structure determinations. [PbCl(18-crown-6)][SbCl6]: Space group P21/c, Z = 8, 5 003 observed unique reflections, R = 0.046. Lattice dimensions at - 80°C: a = 1 386.9; b = 1 642.7; c = 2 172.1 pm, β = 92.95°. The lead atom in the cation [PbCl(18-crown-6)]+ is surrounded in an almost hexagonal-planar construction by the six oxygen atoms of the crown ether and an axially oriented Cl atom. [Pb(18-crown-6)(CH3CN)3][SbCl6]2: Space group P1 , Z = 2, 6 128 observed unique reflections, R = 0.076. Lattice dimensions at - 70°C: a = 1 228.0; b = 1 422.9; c = 1 463.2 pm, α = 69.08°; β = 65.71°; γ = 64.51°. In the cation [Pb(18-crown-6)(CH3CN)3]2+ the lead atom is coordinated by the six oxygen atoms of the crown ether and by the three nitrogen atoms of the acetonitrile molecules. The structure determination is restricted by disorder. [Pb( 15-crown-5)2][SbCI6]2: Space group P63/m, Z = 6, 5 857 observed unique reflections, R = 0.059. Lattice dimensions at -70°C: a = b = 2 198.5; c = 1499.4 pm, α = β = 90°, γ = 120°. In the cation [Pb(l5-crown-5)2]2 the lead atom is sandwich-like coordinated by the ten oxygen atoms of the two crown ether molecules. The structure determination is restricted by disorder.  相似文献   

8.
The title complex, [Li2(D2O)6][Li(C9H27SSiO3)2]2·2D2O, is the first compound with an S—M bond (M = alkali metal) within an unusual type of lithate anion, [Li(SR)2] {where R is Si[OC(CH3)3]3}. There is a centre of symmetry located in the middle of the Li2O2 ring of the cation. All Li atoms are four‐coordinate, with LiO4 (cations) and LiO2S2 (anions) cores. The singly charged [Li(SR)2] anions are well separated from the doubly charged [Li2(D2O)6]2+ cations; the distance between Li atoms from differently charged ions is greater than 5 Å. Both ion types are held within an extended network of O—D⋯O and O—D⋯S hydrogen bonds.  相似文献   

9.
Structural Characterization of Bis(metallated) Derivatives of 3, 3‐Dimethyl‐1, 5‐bis(trimethylsilyl)‐1, 5‐diaza‐pentane with Lithium and Aluminum and of two Donor‐substituted Digallanes The diaminopropane derivative Me2C[CH2N(H)SiMe3]2 is metallated with n‐butyllithium and lithium tetrahydridoaluminate to obtain Me2C[CH2N(Li)SiMe3]2 and Me2C[CH2N(Li)SiMe3][CH2N(AlH2)SiMe3], respectively. Both compounds exhibit a central eight‐membered ring, Li4N4 or Li2Al2N4. Me2C[CH2N(Li)SiMe3]2 reacts with Ga2Cl4 · 2dioxane under formation of the corresponding tetra(amino)digallane. This is monomeric, in contrast to a dimeric tetraalkoxy‐substituted digallane, Ga4OtBu8. All compounds were characterized by single crystal X‐ray crystallography.  相似文献   

10.
The 1:3 reactions of the alkoxy arenes 1,4‐(MeO)2C6H4 and 1,4‐F2‐2,5‐(MeO)2C6H2 with TaF5 in chloroform at 40–50 °C resulted in formation in about 35 % yield of the long‐lived radical cation salts [1,4‐(MeO)2C6H4][Ta2F11] ( 2 a ) and [1,4‐F2‐2,5‐(MeO)2C6H2][Ta2F11] ( 2 b ), respectively. The non‐alkoxy‐substituted [arene][M2X11] [M=Ta, X=F: arene=C6H5Me ( 2 c ), 1,4‐C6H4Me2 ( 2 d ), C6H5F ( 2 e ), C6H5NO2 ( 2 f ); M=Nb, X=F: arene=C6H5Me ( 4 a ), 1,4‐C6H4Me2 ( 4 b ), C6H5F ( 4 c ), C6H5NO2 ( 4 d ); M=Ta, X=Cl: arene=1,4‐C6H4Me2 ( 5 )] were obtained from the 3:1 reactions of MX5 with the appropriate arene in chloroform at temperatures in the range 40–90 °C. Compounds 2 – 5 were detected by EPR spectroscopy (in CHCl3) at room temperature, and their gas‐phase structures were optimized by DFT calculations. Formation of the MIV species [MX4(NCMe)2] [M=Ta, X=F ( 3 a ); M=Nb, X=F ( 3 b ); M=Ta, X=Cl ( 3 c )] was ascertained by EPR spectroscopy on solutions obtained by treatment of the reaction mixtures with acetonitrile. Non‐selective reactions occurred upon combination of 1,4‐F2‐2,5‐(MeO)2C6H2 with AgNbF6 (in CH2Cl2) and 1,4‐(MeO)2C6H4 with SbF5.  相似文献   

11.
On the Coordination Behaviour of Phenylhydrazonepropanedinitriles: Preparation and Structural Characterization of Silver(I) Complexes The preparation of novel silver(I) complexes with anions of phenylhydrazonepropanedinitriles [XC6H4NNC(CN)2] (X = H or NO2) is described. The structures of the following complex compounds are determined by X‐ray diffraction on single crystals: [Ag{O2NC6H4NNC(CN)2}] ( 2 ), [Ag{C6H5NNC(CN)2}(PPh3)] · CH2Cl2 ( 3 · CH2Cl2), [Ag{C6H5NNC(CN)2}(PPh3)2] · 0, 5 CH2Cl2 ( 4 · 0, 5 CH2Cl2) and [Ag(PPh3)4][C6H5NNC(CN)2] ( 5 ). In these complexes a variety of coordination modes of the phenylhydrazonepropanedinitrile anions are observed. In 3 and 4 the phenylhydrazonide anion is coordinated via the hydrazone nitrogen atom N(2). 2 shows the structure of a coordination polymer, where the phenylhydrazone coordinates as a tridentate ligand through both nitrile nitrogen atoms and the hydrazone nitrogen atom N(2). In 5 appears a free, non coordinated phenylhydrazonide anion.  相似文献   

12.
Cubic [Ta6Br12(H2O)6][CuBr2X2]·10H2O and triclinic [Ta6Br12(H2O)6]X2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O (X = Cl, Br, NO3) cocrystallize in aqueous solutions of [Ta6Br12]2+ in the presence of Cu2+ ions. The crystal structures of [Ta6Br12(H2O)6]Cl2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 1 ) and [Ta6Br12(H2O)6]Br2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 3 )have been solved in the triclinic space group P&1macr; (No. 2). Crystal data: 1 , a = 9.3264(2) Å, b = 9.8272(2) Å, c = 19.0158(4) Å, α = 80.931(1)?, β = 81.772(2)?, γ = 80.691(1)?; 3 , a = 9.3399(2) Å, b = 9.8796(2) Å, c = 19.0494(4) Å; α = 81.037(1)?, β = 81.808(1)?, γ = 80.736(1)?. 1 and 3 consist of two octahedral differently charged cluster entities, [Ta6Br12]2+ in the [Ta6Br12(H2O)6]2+ cation and [Ta6Br12]4+ in trans‐[Ta6Br12(OH)4(H2O)2]. Average bond distances in the [Ta6Br12(H2O)6]2+ cations: 1 , Ta‐Ta, 2.9243 Å; Ta‐Bri , 2.607 Å; Ta‐O, 2.23 Å; 3 , Ta‐Ta, 2.9162 Å; Ta‐Bri , 2.603 Å; Ta‐O, 2.24 Å. Average bond distances in trans‐[Ta6‐Br12(OH)4(H2O)2]: 1 , Ta‐Ta, 3.0133 Å; Ta‐Bri, 2.586 Å; Ta‐O(OH), 2.14 Å; Ta‐O(H2O), 2.258(9) Å; 3 , Ta‐Ta, 3.0113 Å; Ta‐Bri, 2.580 Å; Ta‐O(OH), 2.11 Å; Ta‐O(H2O), 2.23(1) Å. The crystal packing results in short O···O contacts along the c axes. Under the same experimental conditions, [Ta6Cl12]2+ oxidized to [Ta6Cl12]4+ , whereas [Nb6X12]2+ clusters were not affected by the Cu2+ ion.  相似文献   

13.
The Reactions of M[BF4] (M = Li, K) and (C2H5)2O·BF3 with (CH3)3SiCN. Formation of M[BFx(CN)4—x] (M = Li, K; x = 1, 2) and (CH3)3SiNCBFx(CN)3—x, (x = 0, 1) The reaction of M[BF4] (M = Li, K) with (CH3)3SiCN leads selectively, depending on the reaction time and temperature, to the mixed cyanofluoroborates M[BFx(CN)4—x] (x = 1, 2; M = Li, K). By using (C2H5)2O·BF3 the synthesis yields the compounds (CH3)3SiNCBFx(CN)3—x x = 0, 1. The products are characterized by vibrational and NMR‐spectroscopy, as well as by X‐ray diffraction of single‐crystals: Li[BF2(CN)2]·2Me3SiCN Cmc21, a = 24.0851(5), b = 12.8829(3), c = 18.9139(5) Å V = 5868.7(2) Å3, Z = 12, R1 = 4.7%; K[BF2(CN)2] P41212, a = 13.1596(3), c = 38.4183(8) Å, V = 6653.1(3) Å3, Z = 48, R1 = 2.5%; K[BF(CN)3] P1¯, a = 6.519(1), b = 7.319(1), c = 7.633(2) Å, α = 68.02(3), β = 74.70(3), γ = 89.09(3)°, V = 324.3(1) Å3, Z = 2, R1 = 3.6%; Me3SiNCBF(CN)2 Pbca, a = 9.1838(6), b = 13.3094(8), c = 16.840(1) Å, V = 2058.4(2) Å3, Z = 8, R1 = 4.4%  相似文献   

14.
The Oxochlorotantalates (PPh4)2[Ta2OCl9]2 · 2 CH2Cl2, (PPh4)2[Ta2OCl10] · 2 CH3CN, and (K-18-crown-6)4[Ta4O6Cl12] · 12 CH2Cl2 (K-18-crown-6)4[Ta4O6Cl12] · 12 CH2Cl2 was obtained from a reaction of tantalum pentachloride, K2S5 and 18-crwon-6 in dichlormethane. According to its crystal structure analysis it is tetragonal (space group I 4 2d) and contains [Ta4O6Cl12]4– ions that have an adamantane-like Ta4O6 skeleton. Each K+ ion is coordinated by the oxygen atoms of the crown ether molecule from one side and with three Cl atoms of one [Ta4O6Cl12]4– ion from the opposite side. (PPh4)2[Ta2OCl10] · 2 CH3CN was a product from PPh4Cl and TaCl5 in acetonitrile in the presence of Na2S4. Its crystals are monoclinic (space group P21/c) and contain centrosymmetric [Ta2OCl10]2– ions having a linear Ta–O–Ta grouping with short bonds (Ta–O 189 pm). TaCl5 and H2S formed a solid substance (TaSCl3) from which a small amount of (PPh4)2[Ta2OCl9]2 · 2 CH2Cl2 was obtained by the reaction with PPh4Cl in CH2Cl2. The anions in the monoclinic crystals (space group P21/n) consist of two Ta2OCl9 units which are joined by chloro bridges; each Ta2OCl9 unit has a nearly linear Ta–O–Ta group with differing bond lengths (179 and 202 pm). The oxygen in the compounds probably was introduced by traces of water in the crown ether, acetonitrile or H2S, respectively.  相似文献   

15.
Reaction of [U(TrenTIPS)(THF)][BPh4] ( 1 ; TrenTIPS=N{CH2CH2NSi(iPr)3}3) with NaPH2 afforded the novel f‐block terminal parent phosphide complex [U(TrenTIPS)(PH2)] ( 2 ; U–P=2.883(2) Å). Treatment of 2 with one equivalent of KCH2C6H5 and two equivalents of benzo‐15‐crown‐5 ether (B15C5) afforded the unprecedented metal‐stabilized terminal parent phosphinidene complex [U(TrenTIPS)(PH)][K(B15C5)2] ( 4 ; U?P=2.613(2) Å). DFT calculations reveal a polarized‐covalent U?P bond with a Mayer bond order of 1.92.  相似文献   

16.
Protonolysis of the titanium alkyl complex [Ti(CH2SiMe3)(Xy-N3N)] (Xy-N3N=[{(3,5-Me2C6H3)NCH2CH2}3N]3−) supported by a triamidoamine ligand, with [NEt3H][B(3,5-Cl2C6H3)4] or [PhNMe2H][B(C6F5)4] afforded the cations [Ti(Xy-N3N)][A] (A=[B(3,5-Cl2C6H3)4] ( 1[B(ArCl)4] ; B(ArCl)4=tetrakis(3,5-dichlorophenyl)borate); A=[B(C6F5)4] ( 1[B(ArF)4] ; B(ArF)4=tetrakis[3,5-bis(trifluoromethyl)phenyl]borate). These Lewis acidic cations were reacted with coordinating solvents to afford the cations [Ti(L)(Xy-N3N)][B(C6F5)4] ( 2-L ; L=Et2O, pyridine and THF). XRD analysis revealed a trigonal monopyramidal (TMP) geometry for the tetracoordinate cations in 1[B(ArX)4] and trigonal bipyramidal (TBP) geometry for the pentacoordinate cations in 2-L . Variable-temperature NMR spectroscopy showed a dynamic equilibrium for 2-Et2O in solution, involving the dissociation of Et2O. Coordination to the titanium(IV) center activated the THF molecule, which, in the presence of NEt3, underwent ring-opening to give the titanium alkoxide [Ti(O(CH2)4NEt3)(Xy-N3N)][B(3,5-Cl2C6H3)4] ( 3 ). Hydride abstraction from Cβ,eq of the triamidoamine ligand arm in [Ti(CH2SiMe3)(Xy-N3N)] or [Ti(NMe2)(Xy-N3N)] with [Ph3C][B(3,5-Cl2C6H3)4] led to the diamidoamine–imine complex [Ti(R){(Xy-N=CHCH2)(Xy-NCH2CH2)2N}][B(3,5-Cl2C6H3)4] (R=CH2SiMe3 ( 4 a ); R=NMe2 ( 4 b )). Hydride addition to 4 b with [Li(THF)][HBPh3] gave [Ti(NMe2)(Xy-N3N)], whereas KH deprotonated further to give [Ti(NMe2){(Xy-NCH=CH)(Xy-NCH2CH2)2N}] ( 5 ). XRD on single crystals of 3 and 4 b confirmed the proposed structures.  相似文献   

17.
The cation of the title compound, [Au4(PPh2CH2PPhCH2PPh2)2Cl2][Au(C6F5)3Cl]2 or [Au4Cl2(C32H29P3)2][AuCl(C6F5)3]2, displays a rhomboidal geometry for the Au atoms, with short Au?Au distances of 3.104 (2) and 3.185 (1) Å; the linear coordination at the AuI atoms is distorted: P—Au—P 164.7 (2)° and P—Au—Cl 170.67 (11)°. The anion shows the expected square‐planar geometry at AuIII, with the Au atom 0.022 (5) Å out of the plane of the four donor atoms.  相似文献   

18.
Salts of the weakly coordinating anions [Ga(OTeF5)4] as well as [Ga(Et)(OTeF5)3] and the neutral Ga2(Et)3(OTeF5)3 were synthesized and characterized by spectroscopic methods and single-crystal X-ray diffraction. Ga2(Et)3(OTeF5)3 was formed by treating GaEt3 with pentafluoroorthotelluric acid (HOTeF5) and reacted with PPh4Cl and CPh3Cl to [PPh4][Ga(Et)(OTeF5)3] and [CPh3][Ga(Et)(OTeF5)3]. In contrast, Ag[Ga(OTeF5)4] was prepared from AgOTeF5 and GaCl3 and was used as a versatile starting material for further reactions. Starting with Ag[Ga(OTeF5)4] the substrates [PPh4][Ga(OTeF5)4] and [CPh3][Ga(OTeF5)4] were formed from PPh4Cl and CPh3Cl.  相似文献   

19.
New Copper(I, II) Compounds Complexes of the type [CuII(N∩N)2][CuICl1+x]2x (N∩N = en, pn, 2-amino picoline) are prepared from Cu(N∩N)2Cl2 and copper(I) chloride. [CuII(enac)][CuICl2]2 — a complex with a macrocyclic cation — is obtained, by the reaction of Cuen2Cl2 in aqueous acetone. Diacetyl monoxime partially reduces copper(II) of Cu(NSMe)2Cl2 and in this way causes the formation of [Cu(NSMe)2][CuCl3] (NSMe = β-aminoethyl methylsulfide). On the other hand a template reaction of this oxime with Cu(NSMe)2 (ClO4)2 produces CuII(ONNSMe)(ClO4) (HONNSMe?CH3C(NOH)C(NCH2CH2SCH3)CH3), which shows a reduced paramagnetism. Basing on magnetic behaviour, i. r. and vis spectra the structure of the new compounds is discussed.  相似文献   

20.
Double chloride abstraction of Cp*AsCl2 gives the dicationic arsenic species [(η5‐Cp*)As(tol)][B(C6F5)4]2 ( 2 ) (tol=toluene). This species is shown to exhibit Lewis super acidity by the Gutmann–Beckett test and by fluoride abstraction from [NBu4][SbF6]. Species 2 participates in the FLP activation of THF affording [(η2‐Cp*)AsO(CH2)4(THF)][B(C6F5)4]2 ( 5 ). The reaction of 2 with PMe3 or dppe generates [(Me3P)2As][B(C6F5)4] ( 6 ) and [(σ‐Cp*)PMe3][B(C6F5)4] ( 7 ), or [(dppe)As][B(C6F5)4] ( 8 ) and [(dppe)(σ‐Cp*)2][B(C6F5)4]2 ( 9 ), respectively, through a facile cleavage of C?As bonds, thus showcasing unusual reactivity of this unique As‐containing compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号