首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
姜浩  姜泓  江骥  钟大放 《分析化学》2002,30(12):1431-1434
应用高效液相色谱-电喷雾离子阱质谱法鉴定了人口服奥美拉唑(OPZ)后0-6h内尿中的代谢物。尿中代谢物经富集后,应用高效液相色谱法分离,然后在线进行选择离子扫描(SIM)、二级碎片离子全扫描(full scan MS^2)和三级碎片离子全扫描(full scan MS^3),进行对尿中微量的烷烃羟基化、O-脱烷烃化、硫氧化和还原以及葡萄糖醛酸化和硫酸化的9种代谢物进行了质谱解析。  相似文献   

2.
总结和归属了(2H)-2-环已基-3,4二氢吡咯并[1,2-α]吡嗪-1-酮及其7个苯甲酰基衍生物和3个苯乙酰基衍生物在电子轰击电离质谱(EI-MS)中的主要裂解方式和特征,指明了主要碎片离子的来源和结构,这10个芳酰基衍生物质谱图中的主要碎片峰均来自麦氏重排和异构化后的α-裂解,由其裂解产生的m/z120和m/z163离子是该类化合物共同的特征离子;吡嗪酮苯甲酰基衍生物基峰为M-82,苯乙酰基类衍生物基峰为m/z245。  相似文献   

3.
总结和归属了(1H)-3,4-二氢吡咯[2,1-c][1,4]噁嗪-1-酮及其6个苯甲酰基衍生物和两个苯乙酰基衍生物在电子轰击电离质谱(EIMS)中的主要裂解方式和特征,指明了主要碎片离子的来源和结构。这8个芳酰基衍生物质谱图中的主要碎片峰均来自α-裂解和脱中性小分子碎片的重排裂解,由其产生的m/z 164、m/z 120和m/z 92离子是该类化合物共同的特征离子;二氢吡咯噁嗪酮苯甲酰基衍生物和苯乙酰基衍生物的基峰都为m/z 164。  相似文献   

4.
总结和归属了(1H)_3,4_二氢吡咯[2,1_c][1,4]嗪_1_酮及其6个苯甲酰基衍生物和两个苯乙酰基衍生物在电子轰击电离质谱(EIMS)中的主要裂解方式和特征,指明了主要碎片离子的来源和结构。这8个芳酰基衍生物质谱图中的主要碎片峰均来自α_裂解和脱中性小分子碎片的重排裂解,由其产生的m/z164、m/z120和m/z92离子是该类化合物共同的特征离子;二氢吡咯嗪酮苯甲酰基衍生物和苯乙酰基衍生物的基峰都为m/z164。  相似文献   

5.
聚芴类发光材料合成中间体的质谱分析   总被引:1,自引:2,他引:1  
利用电喷雾电离(ESI)质谱-质谱(MS-MS)技术,分析了新化合物2,7-双(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)-9,9-二辛基芴的EI和ESI的质谱,确认了该谱图中母离子和子离子的关系,讨论了其碎裂途径,为其结构鉴定提供了依据。  相似文献   

6.
用电子轰击质谱(EI-MS)研究了1-烷基-3-甲基-2(1H)-喹喔啉-2-酮(烷基为H,CH3,Et,n-C5H11),1-烷基-3-甲基-6-硝基-2(1H)-喹喔啉-2-酮(烷基为CH3,Et)和1-甲基-3-甲基-6-胺基-2(1H)-喹喔啉-2-酮,结合其结构特征总结出一些裂解规律。讨论了不同取代基对这类化合物熔点的影响,结果表明:在同类喹喔啉化合物中,随着烷基链的增长,样品熔点通常会有所降低,而硝基及胺基的引入会使其熔点升高。  相似文献   

7.
2-氯-4-(二氯甲基)-5-羟基-2(H)-呋喃酮(MX)是饮用水氯化消毒过程中产生的一种具有强致突变性的消毒副产物(DBPs),在对MX的前驱物模拟氯化过程中,发现在MX峰的附近有一峰,有时干扰MX的测定;作者对该未知峰的质谱图进行了解析,初步推断其结构可能为2-氯-5-酮-3-烯-己二酰氯(2-chloro-5-oxo-3-hexene diacyl chloride,COHC).  相似文献   

8.
陈文彬  金桂玉 《应用化学》2002,19(6):527-530
利用1,3-二芳基-2-[(1H-1,2,4-三唑-1-基)甲基]-2-丙烯-1-酮7与取代硫酚进行1,4-亲核加成,经重排得到化合物4,将化合物4用NaBH4还原,得到目标化合物5,其结构经元素分析、^1H NMR和红外光谱所确证,并测试化合物5对小麦锈病的活性,结果发现大部分化合物的杀菌活性均较低。  相似文献   

9.
4-溴-5-甲基靛红分别与单过邻苯二甲酸,过硫酸钾-硫酸两种氧化剂发生Baeyer-Viliger反应,生成两种同分异构体:5-溴-6-甲基-1H-苯并[1,3]嗪-2,4-二酮和新化合物5-溴-6-甲基-1H-苯并[1,4]嗪-2,3-二酮。利用MS、13CNMR、1HNMR、IR对产品结构进行了分析鉴定。  相似文献   

10.
合成了N,N-二(N-亚甲基琥珀酰亚胺)甘氨酸,并以元素分析、IR、^1H NMR和质谱进行表征,实现中发现铕(Ⅲ)与N,N-二(N-亚甲基琥珀酰亚胺)甘氨酸和1,10二氮杂菲形成的配合物具有光致变色的性质。在铕变色物种里,铕离子与N,N-二(N-亚甲基琥珀酰亚胺)甘氨酸中的羧基,1,10-二氮杂菲中的氮原子相结合,同时也可能与水分子和羟基基团结合。  相似文献   

11.
罗红霉素及其代谢物的电喷雾离子阱质谱研究   总被引:5,自引:1,他引:4  
采用电喷雾离子阱质谱法对人尿样中的罗红霉素及其10种代谢物进行了结构鉴定,利用质谱解析软件对其质谱裂解途径进行分析,发现它们的(+)ESI-MS2和(+)ESI-MS3质谱分别生成脱红霉糖和脱氨基糖碎片,并可见脱去C9位含氮烷基侧链和一系列质荷比相差18的脱水碎片离子,这些特征可用于罗红霉素及其结构类似物的体内代谢转化研究.  相似文献   

12.
The metabolism of the anti-inflammatory drug Celecoxib in rabbits was characterized using liquid chromatography (LC)/tandem mass spectrometry (MS/MS) with precursor ion and constant neutral loss scans followed by product ion scans. After separation by on-line liquid chromatography, the crude urine samples and plasma and fecal extracts were analyzed with turbo-ionspray ionization in negative ion mode using a precursor ion scan of m/z 69 (CF(3)) and a neutral loss scan of 176 (dehydroglucuronic acid). The subsequent product ion scans of the [M - H] ions of these metabolites yielded the identification of three phase I and four phase II metabolites. The phase I metabolites had hydroxylations at the methyl group or on the phenyl ring of Celecoxib, and the subsequent oxidation product of the hydroxymethyl metabolite formed the carboxylic acid metabolite. The phase II metabolites included four positional isomers of acyl glucuronide conjugates of the carboxylic acid metabolite. These positional isomers were caused by the alkaline pH of the rabbit urine and were not found in rabbit plasma. The chemical structures of the metabolites were characterized by interpretation of their product ion spectra and comparison of their LC retention times and the product ion spectra with those of the authentic synthesized standards.  相似文献   

13.
We report herein, facile metabolite identification workflow on the anti-depressant nefazodone, which is derived from accurate mass measurements based on a single run/experimental analysis. A hybrid LTQ/orbitrap mass spectrometer was used to obtain accurate mass full scan MS and MS/MS in a data-dependent fashion to eliminate the reliance on a parent mass list. Initial screening utilized a high mass tolerance ( approximately 10 ppm) to filter the full scan MS data for previously reported nefazodone metabolites. The tight mass tolerance reduces or eliminates background chemical noise, dramatically increasing sensitivity for confirming or eliminating the presence of metabolites as well as isobaric forms. The full scan accurate mass analysis of suspected metabolites can be confirmed or refuted using three primary tools: (1) predictive chemical formula and corresponding mass error analysis, (2) rings-plus-double bonds, and (3) accurate mass product ion spectra of parent and suspected metabolites. Accurate mass characterization of the parent ion structure provided the basis for assessing structural assignment for metabolites. Metabolites were also characterized using parent product ion m/z values to filter all tandem mass spectra for identification of precursor ions yielding similar product ions. Identified metabolite parent masses were subjected to chemical formula calculator based on accurate mass as well as bond saturation. Further analysis of potential nefazodone metabolites was executed using accurate mass product ion spectra. Reported mass measurement errors for all full scan MS and MS/MS spectra was <3 ppm, regardless of relative ion abundance, which enabled the use of predictive software in determining product ion structure. The ability to conduct biotransformation profiling via tandem mass spectrometry coupled with accurate mass measurements, all in a single experimental run, is clearly one of the most attractive features of this methodology.  相似文献   

14.
In this paper, mesterolone metabolic profiles were investigated carefully. Mesterolone was administered to one healthy male volunteer. Urinary extracts were analyzed by liquid chromatography quadruple time‐of‐flight mass spectrometry (LC‐QTOFMS) for the first time. Liquid–liquid extraction was applied to processing urine samples, and dilute‐shoot analyses of intact metabolites were also presented. In LC‐QTOFMS analysis, chromatographic peaks for potential metabolites were hunt down by using the theoretical [M–H]? as target ions in full scan experiment, and their actual deprotonated ions were analyzed in targeted MS/MS mode. Ten metabolites including seven new sulfate and three glucuronide conjugates were found for mesterolone. Because of no useful fragment ion for structural elucidation, gas chromatography–mass spectrometry instrumentation was employed to obtain structural details of the trimethylsilylated phase I metabolite released after solvolysis. Thus, their potential structures were proposed particularly by a combined MS approach. All the metabolites were also evaluated in terms of how long they could be detected, and S1 (1α‐methyl‐5α‐androst‐3‐one‐17β‐sulfate) together with S2 (1α‐methyl‐5α‐androst‐17‐one‐3β‐sulfate) was detected up to 9 days after oral administration, which could be the new potential biomarkers for mesterolone misuse. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
This paper describes a new strategy that utilizes the fast trap mode scan of the hybrid triple quadrupole linear ion trap (QqQ(LIT)) for the identification of drug metabolites. The strategy uses information-dependent acquisition (IDA) where the enhanced mass scan (EMS), the trap mode full scan, was used as the survey scan to trigger multiple dependent enhanced product ion scans (EPI), the trap mode product ion scans. The single data file collected with this approach not only includes full scan data (the survey), but also product ion spectra rich in structural information. By extracting characteristic product ions from the dependent EPI chromatograms, we can provide nearly complete information for in vitro metabolites that otherwise would have to be obtained by multiple precursor ion scan (prec) and constant neutral loss (NL) analysis. This approach effectively overcomes the disadvantages of traditional prec and NL scans, namely the slow quadrupole scan speed, and possible mass shift. Using nefazodone (NEF) as the model compound, we demonstrated the effectiveness of this strategy by identifying 22 phase I metabolites in a single liquid chromatography/tandem mass spectrometry (LC/MS/MS) run. In addition to the metabolites reported previously in the literature, seven new metabolites were identified and their chemical structures are proposed. The oxidative dechlorination biotransformation was also discovered which was not reported in previous literature for NEF. The strategy was further evaluated and worked well for the fast discovery setting when a ballistic gradient elution was used, as well as for a simulated in vivo setting when the incubated sample (phase I metabolites) was spiked to control human plasma extract and control human urine.  相似文献   

16.
In this study, clostebol metabolic profiles were investigated carefully. Clostebol was administered to one healthy male volunteer. Urinary extracts were analyzed by liquid chromatography quadrupole time‐of‐flight mass spectrometry (MS) using full scan and targeted MS/MS techniques with accurate mass measurement for the first time. Liquid–liquid extraction and direct injection were applied to processing urine samples. Chromatographic peaks for potential metabolites were found by using the theoretical [M–H]? as target ion in full scan experiment, and their actual deprotonated ions were analyzed in targeted MS/MS mode. Fourteen metabolites were found for clostebol, and nine unreported metabolites (two free ones and seven sulfate conjugates) were identified by MS, and their potential structures were proposed based on fragmentation and metabolism pathways. Four glucuronide conjugates were also first reported. All the metabolites were evaluated in terms of how long they could be detected and S1 (4ξ‐chloro‐5ξ‐androst‐3ξ‐ol‐17‐one‐3ξ‐sulfate) was considered to be the long‐term metabolite for clostebol misuse detected up to 25 days by liquid–liquid extraction and 14 days by direct injection analysis after oral administration. Five conjugated metabolites (M2, M5, S2, S6 and S7) could also be the alternative biomarkers for clostebol misuse. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The purpose of the study was to determine the advantages of different mass spectrometric instruments and commercially available metabolite identification programs for metabolite profiling. Metabolism of tramadol hydrochloride and the excretion of it and its metabolites into human urine were used as a test case because the metabolism of tramadol is extensive and well known. Accurate mass measurements were carried out with a quadrupole time-of-flight mass spectrometer (Q-TOF) equipped with a LockSpray dual-electrospray ionization source. A triple quadrupole mass spectrometer (QqQ) was applied for full scan, product ion scan, precursor ion scan and neutral loss scan measurements and an ion trap instrument for full scan and product ion measurements. The performance of two metabolite identification programs was tested. The results showed that metabolite programs are time-saving tools but not yet capable of fully automated metabolite profiling. Detection of non-expected metabolites, especially at low concentrations in a complex matrix, is still almost impossible. With low-resolution instruments urine samples proved to be challenging even in a search for expected metabolites. Many false-positive hits were obtained with the automated searching and manual evaluation of the resulting data was required. False positives were avoided by using the higher mass accuracy Q-TOF. Automated programs were useful for constructing product ion methods, but the time-consuming interpretation of mass spectra was done manually. High-quality MS/MS spectra acquired on the QqQ instrument were used for confirmation of the tramadol metabolites. Although the ion trap instrument is of undisputable benefit in MS(n), the low mass cutoff of the ion trap made the identification of tramadol metabolites difficult. Some previously unreported metabolites of tramadol were found in the tramadol urine sample, and their identification was based solely on LC/MS and LC/MS/MS measurements.  相似文献   

18.
The objective of our work was to identify known and unknown metabolites of the drug NTBC (2‐(2‐nitro‐4‐trifluoromethylbenzoyl)‐1,3‐cyclohexanedione) in urine from patients during the treatment of hereditary tyrosinemia type 1 (HT‐1) disease, a severe inborn error of tyrosine metabolism. Two different mass spectrometric techniques, a triple stage quadrupole and an LTQ‐Orbitrap (Fourier transform mass spectrometry (FTMS)), were used for the identification and the structural elucidation of the detected metabolites. Initially, the mass spectrometric (MS) approach consisted of the precursor ion scan detection of the selected product ions, followed by the corresponding collision‐induced dissociation (CID) fragmentation analysis (MS2) for the targeted selected reaction monitoring (SRM) mode. Subsequently, accurate and high‐resolution full scan and MS/MS measurements were performed on the possible metabolites using the LTQ‐Orbitrap. Final confirmation of the identified metabolites was achieved by measuring commercially supplied or laboratory‐synthesized standards. Altogether six metabolites, including NTBC itself, were extracted, detected and identified. In addition, two new NTBC metabolites were unambiguously identified as amino acid conjugates, namely glycine‐NTBC and β‐alanine‐NTBC. These identifications were based on their characteristics of chromatographic retention times, protonated molecular ions, elemental compositions, product ions (using CID and higher‐energy C‐trap dissociation (HCD) techniques) and synthesized references. The applied MS strategy, based on two different MS platforms (LC/MS/MS and FTMS), allowed the rapid identification analysis of the drug metabolites from human extracts and could be used for pharmaceutical research and drug development. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The suitability of liquid chromatography tandem mass spectrometry (LC-MS/MS) and gas chromatography mass spectrometry (GC-MS) for the elucidation of fluoxymesterone metabolism has been evaluated. Electrospray ionization (ESI) and collision induced dissociation (CID) fragmentation in LC-MS/MS and electron impact spectra (EI) in GC-MS have been studied for fluoxymesterone and two commercially available metabolites. MS(n) experiments and accurate mass measurements performed by an ion-trap analyser and a QTOF instrument respectively have been used for the elucidation of the fragmentation pathway. The neutral loss scan of 20 Da (loss of HF) in LC-MS/MS has been applied for the selective detection of fluoxymesterone metabolites. In a positive fluoxymesterone doping control sample, 9 different analytes have been detected including the parent compound. Seven of these metabolites were also confirmed by GC-MS including 5 previously unreported metabolites. On the basis of the ionization, the CID fragmentation, the accurate mass of the product ions and the EI spectra of these analytes, a tentative elucidation as well as a proposal for the metabolic pathway of fluoxymesterone has been suggested. The presence of these compounds has also been confirmed by the analysis of five other positive fluoxymesterone urine samples.  相似文献   

20.
LC–high resolution (HR)-MS well established in proteomics has become more and more important in bioanalysis of small molecules over the last few years. Its high selectivity and specificity provide best prerequisites for its use in broad screening approaches. Therefore, Orbitrap technology was tested for developing a general metabolite-based LC–HR-MS/MS screening approach for urinalysis of drugs necessary in clinical and forensic toxicology. After simple urine precipitation, the drugs and their metabolites were separated within 10 min and detected by a Q-Exactive mass spectrometer in full scan with positive/negative switching, and subsequent data dependent acquisition (DDA) mode. Identification criteria were the presence of accurate precursor ions, isotopic patterns, five most intense fragment ions, and comparison with full HR-MS/MS library spectra. The current library contains over 1900 parent drugs and 1200 metabolites. The method was validated for typical drug representatives and metabolites concerning recovery, matrix effects, process efficiency, and limits showed acceptable results. The applicability was tested first for cardiovascular drugs, which should be screened for in poisoning cases and for medication adherence of hypertension patients. The novel LC–HR-MS/MS method allowed fast, simple, and robust urine screening, particularly for cardiovascular drugs showing the usefulness of Orbitrap technology for drug testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号